Detection of vehicles and buildings in drone aerial images

Detalhes bibliográficos
Autor(a) principal: Amante, Rita Filipa dos Santos
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/34992
Resumo: The need to develop software for aerial image analysis, captured by Unmanned Aerial Vehicles, has increased over the years because their use has become more prevalent in different day-to-day scenarios. Object detection, a Computer Vision technique, is one of the most explored problems in this area and consists of identifying and locating objects in images or videos, with the help of Artificial Intelligence technologies. The aim of this dissertation is to analyze the performance of Deep Learning algorithms for detecting vehicles and buildings in aerial images. Two of the main algorithms described in literature, Faster R-CNN and YOLO, the latter in the third and fifth versions, were chosen to verify which one is capable of better performance. The dataset provided by the Portuguese Military Academy, which was annotated and pre-processed, was used for the training of each algorithm and the performance of tests. The results obtained in the abovementioned dataset demonstrate that there is a considerable discrepancy between the two algorithms, both in terms of performance and speed. Faster R-CNN only proved to be superior to the two versions of YOLO in terms of training speed, as it was the algorithm that required less time for training. Among the versions of YOLO, the fifth version showed the best results.
id RCAP_5be8478f9788d04e8e31d9fe01f00186
oai_identifier_str oai:ria.ua.pt:10773/34992
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Detection of vehicles and buildings in drone aerial imagesArtificial intelligenceMachine learningDeep learningTransfer learningComputer visionObject detectionUAVThe need to develop software for aerial image analysis, captured by Unmanned Aerial Vehicles, has increased over the years because their use has become more prevalent in different day-to-day scenarios. Object detection, a Computer Vision technique, is one of the most explored problems in this area and consists of identifying and locating objects in images or videos, with the help of Artificial Intelligence technologies. The aim of this dissertation is to analyze the performance of Deep Learning algorithms for detecting vehicles and buildings in aerial images. Two of the main algorithms described in literature, Faster R-CNN and YOLO, the latter in the third and fifth versions, were chosen to verify which one is capable of better performance. The dataset provided by the Portuguese Military Academy, which was annotated and pre-processed, was used for the training of each algorithm and the performance of tests. The results obtained in the abovementioned dataset demonstrate that there is a considerable discrepancy between the two algorithms, both in terms of performance and speed. Faster R-CNN only proved to be superior to the two versions of YOLO in terms of training speed, as it was the algorithm that required less time for training. Among the versions of YOLO, the fifth version showed the best results.A necessidade de desenvolver software para a análise de imagem aérea, capturada por Veículos Aéreos Não Tripulados, tem vindo a aumentar ao longo dos anos devido ao facto de serem cada vez mais utilizadas em diversos cenários do dia-a-dia. A deteção de objetos, técnica da Visão Computacional, é um dos problemas mais explorados nesta área e consiste na identificação e localização de objetos em imagens ou vídeos, com o auxílio de tecnologias de Inteligência Artificial. Pretende-se com esta dissertação analisar o desempenho de algoritmos de Aprendizagem Profunda, para a deteção de veículos e edifícios em imagens aéreas. Foram escolhidos dois dos principais algoritmos descritos na literatura, Faster R-CNN e YOLO, este último na terceira e quinta versão, por forma a verificar qual apresenta melhor desempenho. Para o treino de cada algoritmo e realização de testes foi utilizado um conjunto de dados fornecido pela Academia Militar Portuguesa, o qual foi anotado e pré-processado. Os resultados obtidos, no referido conjunto de dados, demonstraram que existe uma discrepância considerável entre os dois algoritmos, tanto a nível do desempenho como do tempo de deteção. O Faster R-CNN apenas se mostrou superior em relação às duas versões do YOLO no tempo de treino, pois foi o algoritmo que precisou de menos tempo. Entre as versões do YOLO, a quinta versão foi a que apresentou melhores resultados.2022-10-26T08:35:06Z2022-07-21T00:00:00Z2022-07-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/34992engAmante, Rita Filipa dos Santosinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:07:30Zoai:ria.ua.pt:10773/34992Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:06:10.474094Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Detection of vehicles and buildings in drone aerial images
title Detection of vehicles and buildings in drone aerial images
spellingShingle Detection of vehicles and buildings in drone aerial images
Amante, Rita Filipa dos Santos
Artificial intelligence
Machine learning
Deep learning
Transfer learning
Computer vision
Object detection
UAV
title_short Detection of vehicles and buildings in drone aerial images
title_full Detection of vehicles and buildings in drone aerial images
title_fullStr Detection of vehicles and buildings in drone aerial images
title_full_unstemmed Detection of vehicles and buildings in drone aerial images
title_sort Detection of vehicles and buildings in drone aerial images
author Amante, Rita Filipa dos Santos
author_facet Amante, Rita Filipa dos Santos
author_role author
dc.contributor.author.fl_str_mv Amante, Rita Filipa dos Santos
dc.subject.por.fl_str_mv Artificial intelligence
Machine learning
Deep learning
Transfer learning
Computer vision
Object detection
UAV
topic Artificial intelligence
Machine learning
Deep learning
Transfer learning
Computer vision
Object detection
UAV
description The need to develop software for aerial image analysis, captured by Unmanned Aerial Vehicles, has increased over the years because their use has become more prevalent in different day-to-day scenarios. Object detection, a Computer Vision technique, is one of the most explored problems in this area and consists of identifying and locating objects in images or videos, with the help of Artificial Intelligence technologies. The aim of this dissertation is to analyze the performance of Deep Learning algorithms for detecting vehicles and buildings in aerial images. Two of the main algorithms described in literature, Faster R-CNN and YOLO, the latter in the third and fifth versions, were chosen to verify which one is capable of better performance. The dataset provided by the Portuguese Military Academy, which was annotated and pre-processed, was used for the training of each algorithm and the performance of tests. The results obtained in the abovementioned dataset demonstrate that there is a considerable discrepancy between the two algorithms, both in terms of performance and speed. Faster R-CNN only proved to be superior to the two versions of YOLO in terms of training speed, as it was the algorithm that required less time for training. Among the versions of YOLO, the fifth version showed the best results.
publishDate 2022
dc.date.none.fl_str_mv 2022-10-26T08:35:06Z
2022-07-21T00:00:00Z
2022-07-21
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/34992
url http://hdl.handle.net/10773/34992
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137716584054784