Detection of vehicles and buildings in drone aerial images
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/34992 |
Resumo: | The need to develop software for aerial image analysis, captured by Unmanned Aerial Vehicles, has increased over the years because their use has become more prevalent in different day-to-day scenarios. Object detection, a Computer Vision technique, is one of the most explored problems in this area and consists of identifying and locating objects in images or videos, with the help of Artificial Intelligence technologies. The aim of this dissertation is to analyze the performance of Deep Learning algorithms for detecting vehicles and buildings in aerial images. Two of the main algorithms described in literature, Faster R-CNN and YOLO, the latter in the third and fifth versions, were chosen to verify which one is capable of better performance. The dataset provided by the Portuguese Military Academy, which was annotated and pre-processed, was used for the training of each algorithm and the performance of tests. The results obtained in the abovementioned dataset demonstrate that there is a considerable discrepancy between the two algorithms, both in terms of performance and speed. Faster R-CNN only proved to be superior to the two versions of YOLO in terms of training speed, as it was the algorithm that required less time for training. Among the versions of YOLO, the fifth version showed the best results. |
id |
RCAP_5be8478f9788d04e8e31d9fe01f00186 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/34992 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Detection of vehicles and buildings in drone aerial imagesArtificial intelligenceMachine learningDeep learningTransfer learningComputer visionObject detectionUAVThe need to develop software for aerial image analysis, captured by Unmanned Aerial Vehicles, has increased over the years because their use has become more prevalent in different day-to-day scenarios. Object detection, a Computer Vision technique, is one of the most explored problems in this area and consists of identifying and locating objects in images or videos, with the help of Artificial Intelligence technologies. The aim of this dissertation is to analyze the performance of Deep Learning algorithms for detecting vehicles and buildings in aerial images. Two of the main algorithms described in literature, Faster R-CNN and YOLO, the latter in the third and fifth versions, were chosen to verify which one is capable of better performance. The dataset provided by the Portuguese Military Academy, which was annotated and pre-processed, was used for the training of each algorithm and the performance of tests. The results obtained in the abovementioned dataset demonstrate that there is a considerable discrepancy between the two algorithms, both in terms of performance and speed. Faster R-CNN only proved to be superior to the two versions of YOLO in terms of training speed, as it was the algorithm that required less time for training. Among the versions of YOLO, the fifth version showed the best results.A necessidade de desenvolver software para a análise de imagem aérea, capturada por Veículos Aéreos Não Tripulados, tem vindo a aumentar ao longo dos anos devido ao facto de serem cada vez mais utilizadas em diversos cenários do dia-a-dia. A deteção de objetos, técnica da Visão Computacional, é um dos problemas mais explorados nesta área e consiste na identificação e localização de objetos em imagens ou vídeos, com o auxílio de tecnologias de Inteligência Artificial. Pretende-se com esta dissertação analisar o desempenho de algoritmos de Aprendizagem Profunda, para a deteção de veículos e edifícios em imagens aéreas. Foram escolhidos dois dos principais algoritmos descritos na literatura, Faster R-CNN e YOLO, este último na terceira e quinta versão, por forma a verificar qual apresenta melhor desempenho. Para o treino de cada algoritmo e realização de testes foi utilizado um conjunto de dados fornecido pela Academia Militar Portuguesa, o qual foi anotado e pré-processado. Os resultados obtidos, no referido conjunto de dados, demonstraram que existe uma discrepância considerável entre os dois algoritmos, tanto a nível do desempenho como do tempo de deteção. O Faster R-CNN apenas se mostrou superior em relação às duas versões do YOLO no tempo de treino, pois foi o algoritmo que precisou de menos tempo. Entre as versões do YOLO, a quinta versão foi a que apresentou melhores resultados.2022-10-26T08:35:06Z2022-07-21T00:00:00Z2022-07-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/34992engAmante, Rita Filipa dos Santosinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:07:30Zoai:ria.ua.pt:10773/34992Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:06:10.474094Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Detection of vehicles and buildings in drone aerial images |
title |
Detection of vehicles and buildings in drone aerial images |
spellingShingle |
Detection of vehicles and buildings in drone aerial images Amante, Rita Filipa dos Santos Artificial intelligence Machine learning Deep learning Transfer learning Computer vision Object detection UAV |
title_short |
Detection of vehicles and buildings in drone aerial images |
title_full |
Detection of vehicles and buildings in drone aerial images |
title_fullStr |
Detection of vehicles and buildings in drone aerial images |
title_full_unstemmed |
Detection of vehicles and buildings in drone aerial images |
title_sort |
Detection of vehicles and buildings in drone aerial images |
author |
Amante, Rita Filipa dos Santos |
author_facet |
Amante, Rita Filipa dos Santos |
author_role |
author |
dc.contributor.author.fl_str_mv |
Amante, Rita Filipa dos Santos |
dc.subject.por.fl_str_mv |
Artificial intelligence Machine learning Deep learning Transfer learning Computer vision Object detection UAV |
topic |
Artificial intelligence Machine learning Deep learning Transfer learning Computer vision Object detection UAV |
description |
The need to develop software for aerial image analysis, captured by Unmanned Aerial Vehicles, has increased over the years because their use has become more prevalent in different day-to-day scenarios. Object detection, a Computer Vision technique, is one of the most explored problems in this area and consists of identifying and locating objects in images or videos, with the help of Artificial Intelligence technologies. The aim of this dissertation is to analyze the performance of Deep Learning algorithms for detecting vehicles and buildings in aerial images. Two of the main algorithms described in literature, Faster R-CNN and YOLO, the latter in the third and fifth versions, were chosen to verify which one is capable of better performance. The dataset provided by the Portuguese Military Academy, which was annotated and pre-processed, was used for the training of each algorithm and the performance of tests. The results obtained in the abovementioned dataset demonstrate that there is a considerable discrepancy between the two algorithms, both in terms of performance and speed. Faster R-CNN only proved to be superior to the two versions of YOLO in terms of training speed, as it was the algorithm that required less time for training. Among the versions of YOLO, the fifth version showed the best results. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-10-26T08:35:06Z 2022-07-21T00:00:00Z 2022-07-21 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/34992 |
url |
http://hdl.handle.net/10773/34992 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137716584054784 |