Assessing accuracy predictors in megatrend qualitative forecasting in the hospitality and tourism industry

Detalhes bibliográficos
Autor(a) principal: Cercas, Francisco José Branco
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/18938
Resumo: Plenty of literature on megatrends escapes the logic of validation. Most publications on forecasting apply quantitative methods and the use of qualitative forecasting is scarce especially in the Hospitality and Tourism (H&T) industry, which is so sensitive to macro level factors. Alongside this, it is surprising that studies that explore the accuracy of such predictions are scarce which hampers the capacity to improve forecasting techniques. With this in consideration, the main goal of this study was to uncover the potential predictors of accuracy in qualitative forecasting sources in H&T. In order to do so, we identified and selected a set of documents that used qualitative forecasting methods to predict trends in H&T for the 1998-2008 period, and devised an empirical study that puts to test the expected trends against the test of time. With a panel of 14 experts in H&T that indicated what occurred in the aforementioned period, we computed a weighted score of accuracy for each document and classified it according to four potential causal variables (Explicit methods, Number of cites, Multisource, and Multimethod, thought of as indicators of forecasting quality). The model was tested with a fuzzy set qualitative comparative analysis (fs/QCA) which indicated that clarifying the qualitative forecasting methods (Explicit) and having multiple sources (Multisource) are the main predictors of the qualitative forecasting sources’ accuracy in H&T.
id RCAP_f28d080d432e1b85e8fe15cd5dc6cc33
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/18938
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Assessing accuracy predictors in megatrend qualitative forecasting in the hospitality and tourism industryQualitative forecastingMegatrendsPredictorsHospitality and tourismfs/QCAPrevisão qualitativaMegatendênciasPreditoresHotelaria e turismoFonte de informaçãoTécnicas de previsãoModelos de precisãoPlenty of literature on megatrends escapes the logic of validation. Most publications on forecasting apply quantitative methods and the use of qualitative forecasting is scarce especially in the Hospitality and Tourism (H&T) industry, which is so sensitive to macro level factors. Alongside this, it is surprising that studies that explore the accuracy of such predictions are scarce which hampers the capacity to improve forecasting techniques. With this in consideration, the main goal of this study was to uncover the potential predictors of accuracy in qualitative forecasting sources in H&T. In order to do so, we identified and selected a set of documents that used qualitative forecasting methods to predict trends in H&T for the 1998-2008 period, and devised an empirical study that puts to test the expected trends against the test of time. With a panel of 14 experts in H&T that indicated what occurred in the aforementioned period, we computed a weighted score of accuracy for each document and classified it according to four potential causal variables (Explicit methods, Number of cites, Multisource, and Multimethod, thought of as indicators of forecasting quality). The model was tested with a fuzzy set qualitative comparative analysis (fs/QCA) which indicated that clarifying the qualitative forecasting methods (Explicit) and having multiple sources (Multisource) are the main predictors of the qualitative forecasting sources’ accuracy in H&T.A maioria das publicações sobre previsão usam métodos quantitativos e a previsão de base qualitativa é escassa especialmente no sector da Hospitalidade e Turismo (H&T) que é tão sensível a fatores de nível macro. Em acréscimo, é surpreendente que os estudos que exploram a precisão de tais previsões sejam escassos, o que reduz a capacidade de melhorar as técnicas de previsão. Considerando isto, o principal objetivo deste estudo foi o de descobrir os potenciais preditores de precisão nas fontes de previsão qualitativa em H&T. Para o concretizar, identificámos e selecionámos um conjunto de documentos que usam métodos qualitativos de previsão para as tendências de H&T para o período de 1998-2008 e desenvolvemos um estudo empírico que põe à prova as tendências esperadas em relação ao teste do tempo. Com um painel de 14 peritos em H&T que indicaram o ocorrido no período mencionado calculámos um score ponderado de precisão para cada documento e classificámo-lo de acordo com quatro potenciais variáveis causais (métodos explícitos, número de citações, multi-fonte e multi-método, tidos como indicadores da qualidade da previsão). O modelo foi testado por via da análise comparada qualitativa de conjunto difuso (fs/QCA) que indicou que clarificar os métodos de previsão usados (explícito) e contar com várias fontes de informação (multi-fonte) são os principais preditores da precisão dos documentos que oferecem previsões qualitativas em H&T.2022-10-13T00:00:00Z2019-10-14T00:00:00Z2019-10-142019-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/octet-streamhttp://hdl.handle.net/10071/18938TID:202294595engCercas, Francisco José Brancoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-07-07T02:50:44Zoai:repositorio.iscte-iul.pt:10071/18938Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-07-07T02:50:44Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Assessing accuracy predictors in megatrend qualitative forecasting in the hospitality and tourism industry
title Assessing accuracy predictors in megatrend qualitative forecasting in the hospitality and tourism industry
spellingShingle Assessing accuracy predictors in megatrend qualitative forecasting in the hospitality and tourism industry
Cercas, Francisco José Branco
Qualitative forecasting
Megatrends
Predictors
Hospitality and tourism
fs/QCA
Previsão qualitativa
Megatendências
Preditores
Hotelaria e turismo
Fonte de informação
Técnicas de previsão
Modelos de precisão
title_short Assessing accuracy predictors in megatrend qualitative forecasting in the hospitality and tourism industry
title_full Assessing accuracy predictors in megatrend qualitative forecasting in the hospitality and tourism industry
title_fullStr Assessing accuracy predictors in megatrend qualitative forecasting in the hospitality and tourism industry
title_full_unstemmed Assessing accuracy predictors in megatrend qualitative forecasting in the hospitality and tourism industry
title_sort Assessing accuracy predictors in megatrend qualitative forecasting in the hospitality and tourism industry
author Cercas, Francisco José Branco
author_facet Cercas, Francisco José Branco
author_role author
dc.contributor.author.fl_str_mv Cercas, Francisco José Branco
dc.subject.por.fl_str_mv Qualitative forecasting
Megatrends
Predictors
Hospitality and tourism
fs/QCA
Previsão qualitativa
Megatendências
Preditores
Hotelaria e turismo
Fonte de informação
Técnicas de previsão
Modelos de precisão
topic Qualitative forecasting
Megatrends
Predictors
Hospitality and tourism
fs/QCA
Previsão qualitativa
Megatendências
Preditores
Hotelaria e turismo
Fonte de informação
Técnicas de previsão
Modelos de precisão
description Plenty of literature on megatrends escapes the logic of validation. Most publications on forecasting apply quantitative methods and the use of qualitative forecasting is scarce especially in the Hospitality and Tourism (H&T) industry, which is so sensitive to macro level factors. Alongside this, it is surprising that studies that explore the accuracy of such predictions are scarce which hampers the capacity to improve forecasting techniques. With this in consideration, the main goal of this study was to uncover the potential predictors of accuracy in qualitative forecasting sources in H&T. In order to do so, we identified and selected a set of documents that used qualitative forecasting methods to predict trends in H&T for the 1998-2008 period, and devised an empirical study that puts to test the expected trends against the test of time. With a panel of 14 experts in H&T that indicated what occurred in the aforementioned period, we computed a weighted score of accuracy for each document and classified it according to four potential causal variables (Explicit methods, Number of cites, Multisource, and Multimethod, thought of as indicators of forecasting quality). The model was tested with a fuzzy set qualitative comparative analysis (fs/QCA) which indicated that clarifying the qualitative forecasting methods (Explicit) and having multiple sources (Multisource) are the main predictors of the qualitative forecasting sources’ accuracy in H&T.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-14T00:00:00Z
2019-10-14
2019-09
2022-10-13T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/18938
TID:202294595
url http://hdl.handle.net/10071/18938
identifier_str_mv TID:202294595
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/octet-stream
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817546337043873792