Estimating tree aboveground biomass using satellite-based data in a Mediterranean agroforestry system using Random Forest algorithm
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
DOI: | 10.1016/j.rsase.2021.100560 |
Texto Completo: | http://hdl.handle.net/10174/29984 https://doi.org/10.1016/j.rsase.2021.100560 |
Resumo: | Forest aboveground biomass (AGB) is a key biophysical variable to assess and monitor the spatio-temporal changes of forest ecosystems. AGB should be accurately and timely estimated through remote sensing to provide valuable information to better support sustainable forest management strategies. QuickBird and WorldView- 2 satellites data and Random Forest (RF) regression model were used to estimate tree AGB in Mediterranean agroforestry systems. Spectral bands, vegetation indices and Grey-Level Co-occurrence Matrix (GLCM) texture features of 140 plots with and without vegetation mask were used as independent variables, while total of AGB per plot was used as dependent variable. A model with good performance was obtained for a complex agroforestry system, with an R2 of 82.0% and RMSE of 10.5 t/ha (22.6%). The top 11 most important variables have 80.3% of total relative importance, with 59.6% of GLCM textural features, 12.3% of vegetation indices and 8.4% of spectral bands. The results highlight the importance of the variable GLCM texture, and the use of vegetation mask and RF regression model to collect accurate spatial information on key crown cover attributes, by excluding the spectral contribution of understory vegetation and soil characteristic, of Mediterranean agroforestry systems. |
id |
RCAP_f40749f759821432da83fdf896df5570 |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/29984 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Estimating tree aboveground biomass using satellite-based data in a Mediterranean agroforestry system using Random Forest algorithmremote sensingvegetation maskvegetation indicesTexture featurebiomassForest aboveground biomass (AGB) is a key biophysical variable to assess and monitor the spatio-temporal changes of forest ecosystems. AGB should be accurately and timely estimated through remote sensing to provide valuable information to better support sustainable forest management strategies. QuickBird and WorldView- 2 satellites data and Random Forest (RF) regression model were used to estimate tree AGB in Mediterranean agroforestry systems. Spectral bands, vegetation indices and Grey-Level Co-occurrence Matrix (GLCM) texture features of 140 plots with and without vegetation mask were used as independent variables, while total of AGB per plot was used as dependent variable. A model with good performance was obtained for a complex agroforestry system, with an R2 of 82.0% and RMSE of 10.5 t/ha (22.6%). The top 11 most important variables have 80.3% of total relative importance, with 59.6% of GLCM textural features, 12.3% of vegetation indices and 8.4% of spectral bands. The results highlight the importance of the variable GLCM texture, and the use of vegetation mask and RF regression model to collect accurate spatial information on key crown cover attributes, by excluding the spectral contribution of understory vegetation and soil characteristic, of Mediterranean agroforestry systems.Elsevier2021-07-09T13:37:01Z2021-07-092021-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/29984http://hdl.handle.net/10174/29984https://doi.org/10.1016/j.rsase.2021.100560engLourenço P., Godinho S., Sousa A., Gonçalves A.C. (2021). Estimating tree aboveground biomass using satellite-based data in a Mediterranean agroforestry system using Random Forest algorithm. Remote Sensing Applications: Society and Environment, 23, 100560.23MEDpmrlourenco@gmail.comgodinho.sergio@gmail.comasousa@uevora.ptacg@uevora.pt214Lourenço, PatriciaGodinho, SérgioSousa, AdéliaGonçalves, Ana Cristinainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:27:26Zoai:dspace.uevora.pt:10174/29984Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:19:29.652582Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Estimating tree aboveground biomass using satellite-based data in a Mediterranean agroforestry system using Random Forest algorithm |
title |
Estimating tree aboveground biomass using satellite-based data in a Mediterranean agroforestry system using Random Forest algorithm |
spellingShingle |
Estimating tree aboveground biomass using satellite-based data in a Mediterranean agroforestry system using Random Forest algorithm Estimating tree aboveground biomass using satellite-based data in a Mediterranean agroforestry system using Random Forest algorithm Lourenço, Patricia remote sensing vegetation mask vegetation indices Texture feature biomass Lourenço, Patricia remote sensing vegetation mask vegetation indices Texture feature biomass |
title_short |
Estimating tree aboveground biomass using satellite-based data in a Mediterranean agroforestry system using Random Forest algorithm |
title_full |
Estimating tree aboveground biomass using satellite-based data in a Mediterranean agroforestry system using Random Forest algorithm |
title_fullStr |
Estimating tree aboveground biomass using satellite-based data in a Mediterranean agroforestry system using Random Forest algorithm Estimating tree aboveground biomass using satellite-based data in a Mediterranean agroforestry system using Random Forest algorithm |
title_full_unstemmed |
Estimating tree aboveground biomass using satellite-based data in a Mediterranean agroforestry system using Random Forest algorithm Estimating tree aboveground biomass using satellite-based data in a Mediterranean agroforestry system using Random Forest algorithm |
title_sort |
Estimating tree aboveground biomass using satellite-based data in a Mediterranean agroforestry system using Random Forest algorithm |
author |
Lourenço, Patricia |
author_facet |
Lourenço, Patricia Lourenço, Patricia Godinho, Sérgio Sousa, Adélia Gonçalves, Ana Cristina Godinho, Sérgio Sousa, Adélia Gonçalves, Ana Cristina |
author_role |
author |
author2 |
Godinho, Sérgio Sousa, Adélia Gonçalves, Ana Cristina |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Lourenço, Patricia Godinho, Sérgio Sousa, Adélia Gonçalves, Ana Cristina |
dc.subject.por.fl_str_mv |
remote sensing vegetation mask vegetation indices Texture feature biomass |
topic |
remote sensing vegetation mask vegetation indices Texture feature biomass |
description |
Forest aboveground biomass (AGB) is a key biophysical variable to assess and monitor the spatio-temporal changes of forest ecosystems. AGB should be accurately and timely estimated through remote sensing to provide valuable information to better support sustainable forest management strategies. QuickBird and WorldView- 2 satellites data and Random Forest (RF) regression model were used to estimate tree AGB in Mediterranean agroforestry systems. Spectral bands, vegetation indices and Grey-Level Co-occurrence Matrix (GLCM) texture features of 140 plots with and without vegetation mask were used as independent variables, while total of AGB per plot was used as dependent variable. A model with good performance was obtained for a complex agroforestry system, with an R2 of 82.0% and RMSE of 10.5 t/ha (22.6%). The top 11 most important variables have 80.3% of total relative importance, with 59.6% of GLCM textural features, 12.3% of vegetation indices and 8.4% of spectral bands. The results highlight the importance of the variable GLCM texture, and the use of vegetation mask and RF regression model to collect accurate spatial information on key crown cover attributes, by excluding the spectral contribution of understory vegetation and soil characteristic, of Mediterranean agroforestry systems. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-07-09T13:37:01Z 2021-07-09 2021-06-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/29984 http://hdl.handle.net/10174/29984 https://doi.org/10.1016/j.rsase.2021.100560 |
url |
http://hdl.handle.net/10174/29984 https://doi.org/10.1016/j.rsase.2021.100560 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Lourenço P., Godinho S., Sousa A., Gonçalves A.C. (2021). Estimating tree aboveground biomass using satellite-based data in a Mediterranean agroforestry system using Random Forest algorithm. Remote Sensing Applications: Society and Environment, 23, 100560. 23 MED pmrlourenco@gmail.com godinho.sergio@gmail.com asousa@uevora.pt acg@uevora.pt 214 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1822239647855542273 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.rsase.2021.100560 |