Estimating tree aboveground biomass using satellite-based data in a Mediterranean agroforestry system using Random Forest algorithm

Detalhes bibliográficos
Autor(a) principal: Lourenço, Patricia
Data de Publicação: 2021
Outros Autores: Godinho, Sérgio, Sousa, Adélia, Gonçalves, Ana Cristina
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
DOI: 10.1016/j.rsase.2021.100560
Texto Completo: http://hdl.handle.net/10174/29984
https://doi.org/10.1016/j.rsase.2021.100560
Resumo: Forest aboveground biomass (AGB) is a key biophysical variable to assess and monitor the spatio-temporal changes of forest ecosystems. AGB should be accurately and timely estimated through remote sensing to provide valuable information to better support sustainable forest management strategies. QuickBird and WorldView- 2 satellites data and Random Forest (RF) regression model were used to estimate tree AGB in Mediterranean agroforestry systems. Spectral bands, vegetation indices and Grey-Level Co-occurrence Matrix (GLCM) texture features of 140 plots with and without vegetation mask were used as independent variables, while total of AGB per plot was used as dependent variable. A model with good performance was obtained for a complex agroforestry system, with an R2 of 82.0% and RMSE of 10.5 t/ha (22.6%). The top 11 most important variables have 80.3% of total relative importance, with 59.6% of GLCM textural features, 12.3% of vegetation indices and 8.4% of spectral bands. The results highlight the importance of the variable GLCM texture, and the use of vegetation mask and RF regression model to collect accurate spatial information on key crown cover attributes, by excluding the spectral contribution of understory vegetation and soil characteristic, of Mediterranean agroforestry systems.
id RCAP_f40749f759821432da83fdf896df5570
oai_identifier_str oai:dspace.uevora.pt:10174/29984
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Estimating tree aboveground biomass using satellite-based data in a Mediterranean agroforestry system using Random Forest algorithmremote sensingvegetation maskvegetation indicesTexture featurebiomassForest aboveground biomass (AGB) is a key biophysical variable to assess and monitor the spatio-temporal changes of forest ecosystems. AGB should be accurately and timely estimated through remote sensing to provide valuable information to better support sustainable forest management strategies. QuickBird and WorldView- 2 satellites data and Random Forest (RF) regression model were used to estimate tree AGB in Mediterranean agroforestry systems. Spectral bands, vegetation indices and Grey-Level Co-occurrence Matrix (GLCM) texture features of 140 plots with and without vegetation mask were used as independent variables, while total of AGB per plot was used as dependent variable. A model with good performance was obtained for a complex agroforestry system, with an R2 of 82.0% and RMSE of 10.5 t/ha (22.6%). The top 11 most important variables have 80.3% of total relative importance, with 59.6% of GLCM textural features, 12.3% of vegetation indices and 8.4% of spectral bands. The results highlight the importance of the variable GLCM texture, and the use of vegetation mask and RF regression model to collect accurate spatial information on key crown cover attributes, by excluding the spectral contribution of understory vegetation and soil characteristic, of Mediterranean agroforestry systems.Elsevier2021-07-09T13:37:01Z2021-07-092021-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/29984http://hdl.handle.net/10174/29984https://doi.org/10.1016/j.rsase.2021.100560engLourenço P., Godinho S., Sousa A., Gonçalves A.C. (2021). Estimating tree aboveground biomass using satellite-based data in a Mediterranean agroforestry system using Random Forest algorithm. Remote Sensing Applications: Society and Environment, 23, 100560.23MEDpmrlourenco@gmail.comgodinho.sergio@gmail.comasousa@uevora.ptacg@uevora.pt214Lourenço, PatriciaGodinho, SérgioSousa, AdéliaGonçalves, Ana Cristinainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:27:26Zoai:dspace.uevora.pt:10174/29984Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:19:29.652582Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Estimating tree aboveground biomass using satellite-based data in a Mediterranean agroforestry system using Random Forest algorithm
title Estimating tree aboveground biomass using satellite-based data in a Mediterranean agroforestry system using Random Forest algorithm
spellingShingle Estimating tree aboveground biomass using satellite-based data in a Mediterranean agroforestry system using Random Forest algorithm
Estimating tree aboveground biomass using satellite-based data in a Mediterranean agroforestry system using Random Forest algorithm
Lourenço, Patricia
remote sensing
vegetation mask
vegetation indices
Texture feature
biomass
Lourenço, Patricia
remote sensing
vegetation mask
vegetation indices
Texture feature
biomass
title_short Estimating tree aboveground biomass using satellite-based data in a Mediterranean agroforestry system using Random Forest algorithm
title_full Estimating tree aboveground biomass using satellite-based data in a Mediterranean agroforestry system using Random Forest algorithm
title_fullStr Estimating tree aboveground biomass using satellite-based data in a Mediterranean agroforestry system using Random Forest algorithm
Estimating tree aboveground biomass using satellite-based data in a Mediterranean agroforestry system using Random Forest algorithm
title_full_unstemmed Estimating tree aboveground biomass using satellite-based data in a Mediterranean agroforestry system using Random Forest algorithm
Estimating tree aboveground biomass using satellite-based data in a Mediterranean agroforestry system using Random Forest algorithm
title_sort Estimating tree aboveground biomass using satellite-based data in a Mediterranean agroforestry system using Random Forest algorithm
author Lourenço, Patricia
author_facet Lourenço, Patricia
Lourenço, Patricia
Godinho, Sérgio
Sousa, Adélia
Gonçalves, Ana Cristina
Godinho, Sérgio
Sousa, Adélia
Gonçalves, Ana Cristina
author_role author
author2 Godinho, Sérgio
Sousa, Adélia
Gonçalves, Ana Cristina
author2_role author
author
author
dc.contributor.author.fl_str_mv Lourenço, Patricia
Godinho, Sérgio
Sousa, Adélia
Gonçalves, Ana Cristina
dc.subject.por.fl_str_mv remote sensing
vegetation mask
vegetation indices
Texture feature
biomass
topic remote sensing
vegetation mask
vegetation indices
Texture feature
biomass
description Forest aboveground biomass (AGB) is a key biophysical variable to assess and monitor the spatio-temporal changes of forest ecosystems. AGB should be accurately and timely estimated through remote sensing to provide valuable information to better support sustainable forest management strategies. QuickBird and WorldView- 2 satellites data and Random Forest (RF) regression model were used to estimate tree AGB in Mediterranean agroforestry systems. Spectral bands, vegetation indices and Grey-Level Co-occurrence Matrix (GLCM) texture features of 140 plots with and without vegetation mask were used as independent variables, while total of AGB per plot was used as dependent variable. A model with good performance was obtained for a complex agroforestry system, with an R2 of 82.0% and RMSE of 10.5 t/ha (22.6%). The top 11 most important variables have 80.3% of total relative importance, with 59.6% of GLCM textural features, 12.3% of vegetation indices and 8.4% of spectral bands. The results highlight the importance of the variable GLCM texture, and the use of vegetation mask and RF regression model to collect accurate spatial information on key crown cover attributes, by excluding the spectral contribution of understory vegetation and soil characteristic, of Mediterranean agroforestry systems.
publishDate 2021
dc.date.none.fl_str_mv 2021-07-09T13:37:01Z
2021-07-09
2021-06-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/29984
http://hdl.handle.net/10174/29984
https://doi.org/10.1016/j.rsase.2021.100560
url http://hdl.handle.net/10174/29984
https://doi.org/10.1016/j.rsase.2021.100560
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Lourenço P., Godinho S., Sousa A., Gonçalves A.C. (2021). Estimating tree aboveground biomass using satellite-based data in a Mediterranean agroforestry system using Random Forest algorithm. Remote Sensing Applications: Society and Environment, 23, 100560.
23
MED
pmrlourenco@gmail.com
godinho.sergio@gmail.com
asousa@uevora.pt
acg@uevora.pt
214
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1822239647855542273
dc.identifier.doi.none.fl_str_mv 10.1016/j.rsase.2021.100560