On the forecasting ability of ARFIMA models when infrequent breaks occur
Autor(a) principal: | |
---|---|
Data de Publicação: | 2004 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/1479 |
Resumo: | Recent research has focused on the links between long memory and structural breaks, stressing the memory properties that may arise in models with parameter changes. In this paper, we question the implications of this result for forecasting. We contribute to this research by comparing the forecasting abilities of long memory and Markov switching models. Two approaches are employed: the Monte Carlo study and an empirical comparison, using the quarterly Consumer Price inflation rate in Portugal in the period 1968–1998. Although long memory models may capture some in-sample features of the data, we find that their forecasting performance is relatively poor when shifts occur in the series, compared to simple linear and Markov switching models. |
id |
RCAP_f542ddc2789d68087706b7baa6cd443e |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/1479 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On the forecasting ability of ARFIMA models when infrequent breaks occurLong MemoryRegime switchingForecastingRecent research has focused on the links between long memory and structural breaks, stressing the memory properties that may arise in models with parameter changes. In this paper, we question the implications of this result for forecasting. We contribute to this research by comparing the forecasting abilities of long memory and Markov switching models. Two approaches are employed: the Monte Carlo study and an empirical comparison, using the quarterly Consumer Price inflation rate in Portugal in the period 1968–1998. Although long memory models may capture some in-sample features of the data, we find that their forecasting performance is relatively poor when shifts occur in the series, compared to simple linear and Markov switching models.Blackwell PublishingUniversidade do MinhoGabriel, Vasco J.Martins, Luís2004-122004-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/1479eng"Econometrics Journal". ISSN 1368-4221. 7 (2004) 455-475.1368-4221info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:18:49Zoai:repositorium.sdum.uminho.pt:1822/1479Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:11:40.113868Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On the forecasting ability of ARFIMA models when infrequent breaks occur |
title |
On the forecasting ability of ARFIMA models when infrequent breaks occur |
spellingShingle |
On the forecasting ability of ARFIMA models when infrequent breaks occur Gabriel, Vasco J. Long Memory Regime switching Forecasting |
title_short |
On the forecasting ability of ARFIMA models when infrequent breaks occur |
title_full |
On the forecasting ability of ARFIMA models when infrequent breaks occur |
title_fullStr |
On the forecasting ability of ARFIMA models when infrequent breaks occur |
title_full_unstemmed |
On the forecasting ability of ARFIMA models when infrequent breaks occur |
title_sort |
On the forecasting ability of ARFIMA models when infrequent breaks occur |
author |
Gabriel, Vasco J. |
author_facet |
Gabriel, Vasco J. Martins, Luís |
author_role |
author |
author2 |
Martins, Luís |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Gabriel, Vasco J. Martins, Luís |
dc.subject.por.fl_str_mv |
Long Memory Regime switching Forecasting |
topic |
Long Memory Regime switching Forecasting |
description |
Recent research has focused on the links between long memory and structural breaks, stressing the memory properties that may arise in models with parameter changes. In this paper, we question the implications of this result for forecasting. We contribute to this research by comparing the forecasting abilities of long memory and Markov switching models. Two approaches are employed: the Monte Carlo study and an empirical comparison, using the quarterly Consumer Price inflation rate in Portugal in the period 1968–1998. Although long memory models may capture some in-sample features of the data, we find that their forecasting performance is relatively poor when shifts occur in the series, compared to simple linear and Markov switching models. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-12 2004-12-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/1479 |
url |
http://hdl.handle.net/1822/1479 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
"Econometrics Journal". ISSN 1368-4221. 7 (2004) 455-475. 1368-4221 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Blackwell Publishing |
publisher.none.fl_str_mv |
Blackwell Publishing |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132549522391040 |