On the forecasting ability of ARFIMA models when infrequent breaks occur

Detalhes bibliográficos
Autor(a) principal: Gabriel, Vasco J.
Data de Publicação: 2004
Outros Autores: Martins, Luís
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/1479
Resumo: Recent research has focused on the links between long memory and structural breaks, stressing the memory properties that may arise in models with parameter changes. In this paper, we question the implications of this result for forecasting. We contribute to this research by comparing the forecasting abilities of long memory and Markov switching models. Two approaches are employed: the Monte Carlo study and an empirical comparison, using the quarterly Consumer Price inflation rate in Portugal in the period 1968–1998. Although long memory models may capture some in-sample features of the data, we find that their forecasting performance is relatively poor when shifts occur in the series, compared to simple linear and Markov switching models.
id RCAP_f542ddc2789d68087706b7baa6cd443e
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/1479
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling On the forecasting ability of ARFIMA models when infrequent breaks occurLong MemoryRegime switchingForecastingRecent research has focused on the links between long memory and structural breaks, stressing the memory properties that may arise in models with parameter changes. In this paper, we question the implications of this result for forecasting. We contribute to this research by comparing the forecasting abilities of long memory and Markov switching models. Two approaches are employed: the Monte Carlo study and an empirical comparison, using the quarterly Consumer Price inflation rate in Portugal in the period 1968–1998. Although long memory models may capture some in-sample features of the data, we find that their forecasting performance is relatively poor when shifts occur in the series, compared to simple linear and Markov switching models.Blackwell PublishingUniversidade do MinhoGabriel, Vasco J.Martins, Luís2004-122004-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/1479eng"Econometrics Journal". ISSN 1368-4221. 7 (2004) 455-475.1368-4221info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:18:49Zoai:repositorium.sdum.uminho.pt:1822/1479Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:11:40.113868Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv On the forecasting ability of ARFIMA models when infrequent breaks occur
title On the forecasting ability of ARFIMA models when infrequent breaks occur
spellingShingle On the forecasting ability of ARFIMA models when infrequent breaks occur
Gabriel, Vasco J.
Long Memory
Regime switching
Forecasting
title_short On the forecasting ability of ARFIMA models when infrequent breaks occur
title_full On the forecasting ability of ARFIMA models when infrequent breaks occur
title_fullStr On the forecasting ability of ARFIMA models when infrequent breaks occur
title_full_unstemmed On the forecasting ability of ARFIMA models when infrequent breaks occur
title_sort On the forecasting ability of ARFIMA models when infrequent breaks occur
author Gabriel, Vasco J.
author_facet Gabriel, Vasco J.
Martins, Luís
author_role author
author2 Martins, Luís
author2_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Gabriel, Vasco J.
Martins, Luís
dc.subject.por.fl_str_mv Long Memory
Regime switching
Forecasting
topic Long Memory
Regime switching
Forecasting
description Recent research has focused on the links between long memory and structural breaks, stressing the memory properties that may arise in models with parameter changes. In this paper, we question the implications of this result for forecasting. We contribute to this research by comparing the forecasting abilities of long memory and Markov switching models. Two approaches are employed: the Monte Carlo study and an empirical comparison, using the quarterly Consumer Price inflation rate in Portugal in the period 1968–1998. Although long memory models may capture some in-sample features of the data, we find that their forecasting performance is relatively poor when shifts occur in the series, compared to simple linear and Markov switching models.
publishDate 2004
dc.date.none.fl_str_mv 2004-12
2004-12-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/1479
url http://hdl.handle.net/1822/1479
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv "Econometrics Journal". ISSN 1368-4221. 7 (2004) 455-475.
1368-4221
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Blackwell Publishing
publisher.none.fl_str_mv Blackwell Publishing
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132549522391040