Eulerian Ideals and beyond

Detalhes bibliográficos
Autor(a) principal: Varejão, Gonçalo Nuno Mota
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/95559
Resumo: Dissertação de Mestrado em Matemática apresentada à Faculdade de Ciências e Tecnologia
id RCAP_f54bdd6bca514a003af1670c71b39c98
oai_identifier_str oai:estudogeral.uc.pt:10316/95559
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Eulerian Ideals and beyondEulerian Ideals and beyondGrafoHipergrafoIdeal binomialÍndice de regularidadeJunçãoBinomial IdealGraphHypergraphJoinRegularity indexDissertação de Mestrado em Matemática apresentada à Faculdade de Ciências e TecnologiaO anel de polinómios K[x_1,...,x_n], com K um corpo, é um conceito importante na Álgebra Comutativa. Os matemáticos têm trabalhado com anéis de polinómios e os seus ideais desde o final do século XIX, mas a Álgebra Comutativa apenas se concretizou como um ramo da matemática no século XX. Foi em 1921, com o trabalho de Emmy Noether, que muitos dos atuais conceitos abstratos que estudamos em Álgebra Comutativa, ganharam a atenção da comunidade matemática. Hoje em dia, há uma nova área de investigação que combina a Álgebra Comutativa com a Combinatória, através do anel de polinómios. Neste trabalho, vamos estudar alguma da teoria necessária para compreender alguns conceitos deste ramo da matemática, que tem hoje o nome de Álgebra Comutativa Combinatória. Começamos por estudar propriedades gerais de módulos e de outros conceitos relacionados, como sequências exactas e módulos de sizígias. Explicamos como construir resoluções livres de um módulo e enunciamos o Teorema das Sizígias de Hilbert. Depois passamos para a teoria dos módulos graduados. Mostramos que os módulos de sizígias podem ser vistos como submódulos graduados, e definimos resoluções graduadas. Apresentamos também a sua construção, e de seguida enunciamos a versão graduada do Teorema das Sizígias de Hilbert. Terminamos o capítulo da teoria preliminar definindo a função de Hilbert, dando exemplos, e mostrando que esta é de tipo polinomial. Relativamente à Álgebra Comutativa Combinatória, vamos apresentar uma construção que liga as ferramentas algébricas mencionadas à teoria dos grafos, o ideal Euleriano de um grafo. Vamos apresentar os resultados e as demonstrações de Neves, Vaz Pinto, e Villarreal. Primeiro caracterizamos os geradores do ideal usando os subgrafos Eulerianos do grafo. Mostramos que o polinómio de Hilbert do módulo quociente pelo ideal Euleriano é constante, e estudamos o índice de regularidade deste módulo. Nesse estudo caracterizamos o índice de regularidade para grafos bipartidos, através das junções do grafo. De seguida estudamos T-junções e apresentamos a relação entre junção e T-junção. Estes resultados são depois usados para calcular, de forma explícita, o índice de regularidade para os grafos bipartidos completos, e Hamiltonianos bipartidos. Depois generalizamos a construção do ideal Euleriano para hipergrafos. Focamo-nos em hipergrafos k-uniformes, e generalizamos para estes os resultados apresentados para grafos. Em particular, caracterizamos o índice de regularidade para hipergrafos k-uniformes k-partidos, calculando-o para o caso k-partido completo.The polynomial ring K[x_1,...,x_n], with K a field, is an important concept in commutative algebra. Mathematicians have been working with polynomial rings and their ideals since the late XIX century, but commutative algebra itself only came alive, as a field of mathematics, in the XX century. It was in 1921, with the work of Emmy Noether, that many of the current abstract concepts we study in commutative algebra drew the attention of the mathematical community. Nowadays there is a new area of research that combines commutative algebra and combinatorics through the polynomial ring. In this work we will study some of the theory necessary to comprehend many concepts of this field of mathematics, now called combinatorial commutative algebra. We begin by studying general properties of modules and other related concepts, such as exact sequences and syzygy modules. We explain how to construct a free resolution of a module and enunciate the Hilbert's Syzygy Theorem. Then we move on to the theory of graded modules. We show syzygy modules can be seen as graded submodules, and define graded resolutions. For these we will also give the construction, and then enunciate the graded version of the Syzygy Theorem of Hilbert. We end the chapter of the preliminary theory by defining the Hilbert function, giving examples, and showing it is a function of polynomial type. Regarding combinatorial commutative algebra, we will present one construction that connects the algebraic tools we mentioned before to the theory of graphs, the Eulerian ideal of a graph. We will present the results and proofs of Neves, Vaz Pinto, and Villarreal. We first characterize the generators of the ideal using the Eulerian subgraphs of the graph. We prove that the Hilbert polynomial of the quotient module by the Eulerian ideal is constant, and study the regularity index of this module. Then we present a characterization of this regularity index, for bipartite graphs, using the joins of the graph. After that, we study T-joins and present the connection between join and T-join. These results are then used to explicitly calculate the regularity index for the complete bipartite graphs, and Hamiltonian bipartite graphs. Afterwards, we generalize the construction of the Eulerian ideal for hypergraphs. We focus on k-uniform hypergraphs, and generalize for these the results presented for graphs. In particular, we characterize the regularity index for k-partite k-uniform hypergraphs, and calculate it for the complete k-partite case.2021-07-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://hdl.handle.net/10316/95559http://hdl.handle.net/10316/95559TID:202753921engVarejão, Gonçalo Nuno Motainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-05-25T05:08:31Zoai:estudogeral.uc.pt:10316/95559Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:14:01.850871Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Eulerian Ideals and beyond
Eulerian Ideals and beyond
title Eulerian Ideals and beyond
spellingShingle Eulerian Ideals and beyond
Varejão, Gonçalo Nuno Mota
Grafo
Hipergrafo
Ideal binomial
Índice de regularidade
Junção
Binomial Ideal
Graph
Hypergraph
Join
Regularity index
title_short Eulerian Ideals and beyond
title_full Eulerian Ideals and beyond
title_fullStr Eulerian Ideals and beyond
title_full_unstemmed Eulerian Ideals and beyond
title_sort Eulerian Ideals and beyond
author Varejão, Gonçalo Nuno Mota
author_facet Varejão, Gonçalo Nuno Mota
author_role author
dc.contributor.author.fl_str_mv Varejão, Gonçalo Nuno Mota
dc.subject.por.fl_str_mv Grafo
Hipergrafo
Ideal binomial
Índice de regularidade
Junção
Binomial Ideal
Graph
Hypergraph
Join
Regularity index
topic Grafo
Hipergrafo
Ideal binomial
Índice de regularidade
Junção
Binomial Ideal
Graph
Hypergraph
Join
Regularity index
description Dissertação de Mestrado em Matemática apresentada à Faculdade de Ciências e Tecnologia
publishDate 2021
dc.date.none.fl_str_mv 2021-07-14
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/95559
http://hdl.handle.net/10316/95559
TID:202753921
url http://hdl.handle.net/10316/95559
identifier_str_mv TID:202753921
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134037854388224