On Ramsey property for random graphs.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/50244 |
Resumo: | A graph G is Ramsey for a pair of graphs (F 1 , F 2 ) if in every 2-edge-colouring of G, one can find a monochromatic copy of F 1 with the first colour or a monochromatic copy of F 2 with the second colour. The binomial random graph G n,p is a subgraph of K n , the complete graph on n vertices, obtained by choosing each edge of K n independently at random with probability p to belong to G n,p . For a graph F, let m 2 (F) be the maximum of d 2 (F0) = (e(F0) − 1)/(v(F0) − 2) over all the subgraphs F0 ⊆ F with v(F0) ≥ 3. If this maximum is reached for F0 = F, then we say that F is 2-balanced. Furthermore, we say that F is strictly 2-balanced if d 2 (F) > d 2 (F0), for all proper subgraph F0 of F with v(F0) ≥ 3. For a pair of graphs (F 1 , F 2 ), let m 2 (F 1 , F 2 ) be the maximum of e(F01)/(v(F01) − 2 + 1/m 2 (F 2 )) over all the subgraphs F01⊆ F 1 with v(F01) ≥ 3. This dissertation aims to present a proof that for every pair of graphs (F 1 , F 2 ) such that F 1 is 2-balanced and m 2 (F 1 ) > m 2 (F 2 ) > 1 or F 1 is strictly 2-balanced and m 2 (F 1 ) ≥ m 2 (F 2 ) > 1, there exists a positive constant C for which asymptotically almost surely G n,p is Ramsey for the pair (F 1 , F 2 ), whenever that p ≥ Cn−1/m2(F1,F2). This result was conjectured by Kohayakawa and Kreuter in 1997 without the balancing condition over F1. The proof of the main theorem uses a recently developed technique known as hypergraph containers. |
id |
UFC-7_968a7b051603241246f2aaabd7dc609c |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/50244 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
On Ramsey property for random graphs.On Ramsey property for random graphs.Ramsey propertyBinomial random graphThreshold functionPropriedade de RamseyGrafo aleatório binomialFunção limiarA graph G is Ramsey for a pair of graphs (F 1 , F 2 ) if in every 2-edge-colouring of G, one can find a monochromatic copy of F 1 with the first colour or a monochromatic copy of F 2 with the second colour. The binomial random graph G n,p is a subgraph of K n , the complete graph on n vertices, obtained by choosing each edge of K n independently at random with probability p to belong to G n,p . For a graph F, let m 2 (F) be the maximum of d 2 (F0) = (e(F0) − 1)/(v(F0) − 2) over all the subgraphs F0 ⊆ F with v(F0) ≥ 3. If this maximum is reached for F0 = F, then we say that F is 2-balanced. Furthermore, we say that F is strictly 2-balanced if d 2 (F) > d 2 (F0), for all proper subgraph F0 of F with v(F0) ≥ 3. For a pair of graphs (F 1 , F 2 ), let m 2 (F 1 , F 2 ) be the maximum of e(F01)/(v(F01) − 2 + 1/m 2 (F 2 )) over all the subgraphs F01⊆ F 1 with v(F01) ≥ 3. This dissertation aims to present a proof that for every pair of graphs (F 1 , F 2 ) such that F 1 is 2-balanced and m 2 (F 1 ) > m 2 (F 2 ) > 1 or F 1 is strictly 2-balanced and m 2 (F 1 ) ≥ m 2 (F 2 ) > 1, there exists a positive constant C for which asymptotically almost surely G n,p is Ramsey for the pair (F 1 , F 2 ), whenever that p ≥ Cn−1/m2(F1,F2). This result was conjectured by Kohayakawa and Kreuter in 1997 without the balancing condition over F1. The proof of the main theorem uses a recently developed technique known as hypergraph containers.Um grafo G é Ramsey para um par de grafos (F1, F2) se em toda 2-aresta-coloração de G for possível encontrar cópias monocromáticas de F1 com a primeira cor ou cópias monocromáticas de F2 com a segunda cor. O grafo aleatório binomial Gn,p é um subgrafo de Kn, o grafo completo com n vértices, obtido escolhendo cada aresta de Kn independentemente e aleatoriamente com probabilidade p para pertencer à Gn,p. Para um grafo F, seja m2(F) o valor máximo de d(F0) = (e(F0) − 1)/(v(F0) − 2) dentre todos os subgrafos F0 ⊆ F com v(F0) ≥ 3. Se tal máximo é atingido por F0 = F, então dizemos que F é 2-balanceado. Ademais, dizemos que F é estritamente 2-balanceado se d2(F) > d2(F0) para todo subgrafo próprio F0 de F com v(F0) ≥ 3. Para um par de grafos (F1, F2), seja m2(F1, F2) o valor máximo de e(F01)/(v(F01) − 2 + 1/m2(F2)) dentre todos os subgrafos F01⊆ F 1 com v(F01) ≥ 3. Esta dissertação objetiva-se em apresentar uma prova de que para todo par de grafos (F1, F2) tais que F1 é 2-balanceado e m2(F1) > m2(F2) > 1 ou F1 é estritamente 2-balanceado e m2(F1) ≥ m2(F2) > 1, existe uma constante positiva C para o qual assimptoticamente quase certamente, Gn,p é Ramsey para o par (F1, F2), sempre que p ≥ Cn−1/m2(F1,F2) . Este resultado foi conjeturado por Kohayakawa and Kreuter em 1997 sem a condição de balanceamento sobre F1. A prova do principal teorema nesta dissertação deverá usar técnicas desenvolvidas recentemente e conhecidas como hypergraph containers.Benevides, Fabrício SiqueiraSantos, Walner Mendonça dos2020-02-21T10:34:04Z2020-02-21T10:34:04Z2016-08-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfSANTOS, Walner Mendonça dos. On Ramsey property for random graphs. 2016. 67 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2016.http://www.repositorio.ufc.br/handle/riufc/50244engreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2020-02-21T10:34:04Zoai:repositorio.ufc.br:riufc/50244Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:59:03.391038Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
On Ramsey property for random graphs. On Ramsey property for random graphs. |
title |
On Ramsey property for random graphs. |
spellingShingle |
On Ramsey property for random graphs. Santos, Walner Mendonça dos Ramsey property Binomial random graph Threshold function Propriedade de Ramsey Grafo aleatório binomial Função limiar |
title_short |
On Ramsey property for random graphs. |
title_full |
On Ramsey property for random graphs. |
title_fullStr |
On Ramsey property for random graphs. |
title_full_unstemmed |
On Ramsey property for random graphs. |
title_sort |
On Ramsey property for random graphs. |
author |
Santos, Walner Mendonça dos |
author_facet |
Santos, Walner Mendonça dos |
author_role |
author |
dc.contributor.none.fl_str_mv |
Benevides, Fabrício Siqueira |
dc.contributor.author.fl_str_mv |
Santos, Walner Mendonça dos |
dc.subject.por.fl_str_mv |
Ramsey property Binomial random graph Threshold function Propriedade de Ramsey Grafo aleatório binomial Função limiar |
topic |
Ramsey property Binomial random graph Threshold function Propriedade de Ramsey Grafo aleatório binomial Função limiar |
description |
A graph G is Ramsey for a pair of graphs (F 1 , F 2 ) if in every 2-edge-colouring of G, one can find a monochromatic copy of F 1 with the first colour or a monochromatic copy of F 2 with the second colour. The binomial random graph G n,p is a subgraph of K n , the complete graph on n vertices, obtained by choosing each edge of K n independently at random with probability p to belong to G n,p . For a graph F, let m 2 (F) be the maximum of d 2 (F0) = (e(F0) − 1)/(v(F0) − 2) over all the subgraphs F0 ⊆ F with v(F0) ≥ 3. If this maximum is reached for F0 = F, then we say that F is 2-balanced. Furthermore, we say that F is strictly 2-balanced if d 2 (F) > d 2 (F0), for all proper subgraph F0 of F with v(F0) ≥ 3. For a pair of graphs (F 1 , F 2 ), let m 2 (F 1 , F 2 ) be the maximum of e(F01)/(v(F01) − 2 + 1/m 2 (F 2 )) over all the subgraphs F01⊆ F 1 with v(F01) ≥ 3. This dissertation aims to present a proof that for every pair of graphs (F 1 , F 2 ) such that F 1 is 2-balanced and m 2 (F 1 ) > m 2 (F 2 ) > 1 or F 1 is strictly 2-balanced and m 2 (F 1 ) ≥ m 2 (F 2 ) > 1, there exists a positive constant C for which asymptotically almost surely G n,p is Ramsey for the pair (F 1 , F 2 ), whenever that p ≥ Cn−1/m2(F1,F2). This result was conjectured by Kohayakawa and Kreuter in 1997 without the balancing condition over F1. The proof of the main theorem uses a recently developed technique known as hypergraph containers. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-08-16 2020-02-21T10:34:04Z 2020-02-21T10:34:04Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
SANTOS, Walner Mendonça dos. On Ramsey property for random graphs. 2016. 67 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2016. http://www.repositorio.ufc.br/handle/riufc/50244 |
identifier_str_mv |
SANTOS, Walner Mendonça dos. On Ramsey property for random graphs. 2016. 67 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2016. |
url |
http://www.repositorio.ufc.br/handle/riufc/50244 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1813029022315053056 |