Modelling the particle contact influence on the Joule heating and temperature distribution during FLASH sintering
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/37667 |
Resumo: | FLASH sintering is a field-assisted technique that allows the densification of ceramics in a few seconds at temperatures significantly lower than those of conventional cycles. There is still discussion among the scientific community about the mechanism behind this sintering process, that has been typically attributed to Joule heating, defect creation and movement or liquid phase assisted sintering. Computational modelling can be a powerful tool in helping to explain and predict this process. Using potassium sodium niobate (KNN) as a case study, a lead-free piezoelectric, this work explores Finite Element Modelling to evaluate the dependence of Joule heating generation and temperature distribution as a function of the cubic particle orientation. |
id |
RCAP_f57c54702993447a443958e6c4dd3ee0 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/37667 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Modelling the particle contact influence on the Joule heating and temperature distribution during FLASH sinteringFinite element modellingFlash sinteringJoule heatingMicrostructure property relationshipsFLASH sintering is a field-assisted technique that allows the densification of ceramics in a few seconds at temperatures significantly lower than those of conventional cycles. There is still discussion among the scientific community about the mechanism behind this sintering process, that has been typically attributed to Joule heating, defect creation and movement or liquid phase assisted sintering. Computational modelling can be a powerful tool in helping to explain and predict this process. Using potassium sodium niobate (KNN) as a case study, a lead-free piezoelectric, this work explores Finite Element Modelling to evaluate the dependence of Joule heating generation and temperature distribution as a function of the cubic particle orientation.Elsevier2023-05-11T09:16:46Z2020-04-01T00:00:00Z2020-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/37667eng0955-221910.1016/j.jeurceramsoc.2019.12.015Serrazina, RicardoVilarinho, Paula M.Senos, Ana M.O.R.Pereira, LuisReaney, Ian M.Dean, Julian S.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:12:53Zoai:ria.ua.pt:10773/37667Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:08:16.207365Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Modelling the particle contact influence on the Joule heating and temperature distribution during FLASH sintering |
title |
Modelling the particle contact influence on the Joule heating and temperature distribution during FLASH sintering |
spellingShingle |
Modelling the particle contact influence on the Joule heating and temperature distribution during FLASH sintering Serrazina, Ricardo Finite element modelling Flash sintering Joule heating Microstructure property relationships |
title_short |
Modelling the particle contact influence on the Joule heating and temperature distribution during FLASH sintering |
title_full |
Modelling the particle contact influence on the Joule heating and temperature distribution during FLASH sintering |
title_fullStr |
Modelling the particle contact influence on the Joule heating and temperature distribution during FLASH sintering |
title_full_unstemmed |
Modelling the particle contact influence on the Joule heating and temperature distribution during FLASH sintering |
title_sort |
Modelling the particle contact influence on the Joule heating and temperature distribution during FLASH sintering |
author |
Serrazina, Ricardo |
author_facet |
Serrazina, Ricardo Vilarinho, Paula M. Senos, Ana M.O.R. Pereira, Luis Reaney, Ian M. Dean, Julian S. |
author_role |
author |
author2 |
Vilarinho, Paula M. Senos, Ana M.O.R. Pereira, Luis Reaney, Ian M. Dean, Julian S. |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Serrazina, Ricardo Vilarinho, Paula M. Senos, Ana M.O.R. Pereira, Luis Reaney, Ian M. Dean, Julian S. |
dc.subject.por.fl_str_mv |
Finite element modelling Flash sintering Joule heating Microstructure property relationships |
topic |
Finite element modelling Flash sintering Joule heating Microstructure property relationships |
description |
FLASH sintering is a field-assisted technique that allows the densification of ceramics in a few seconds at temperatures significantly lower than those of conventional cycles. There is still discussion among the scientific community about the mechanism behind this sintering process, that has been typically attributed to Joule heating, defect creation and movement or liquid phase assisted sintering. Computational modelling can be a powerful tool in helping to explain and predict this process. Using potassium sodium niobate (KNN) as a case study, a lead-free piezoelectric, this work explores Finite Element Modelling to evaluate the dependence of Joule heating generation and temperature distribution as a function of the cubic particle orientation. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-04-01T00:00:00Z 2020-04 2023-05-11T09:16:46Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/37667 |
url |
http://hdl.handle.net/10773/37667 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0955-2219 10.1016/j.jeurceramsoc.2019.12.015 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137735796064256 |