Design of a Limiting Amplifier for an Optical Receiver

Detalhes bibliográficos
Autor(a) principal: Leitão, Renata Santos
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/74921
Resumo: The HEP experiments that take place at CERN’s LHC demand a multi-gigabit optical link for an efficient transmission of the resulting generated data. An optoelectronic link arises as the best solution given its possibility of working at high data rates and due to fiber’s imunnity to electromagnetic noise. The design of this optical link is particularly demanding due to the stringent data rate specifications (5Gb/s), the BER specification (1012) and the constraints imposed by radiation. In HEP, radiation is always a constraint so, the Optical Receiver circuit must be hardened in order to tolerate that kind of environment - radiation-tolerant. The core of a standard optoeletronic receiver includes a Photodiode, a Transimpedance Amplifier (TIA) and a Limiting Amplifier (LA). This thesis proposes the study and implementation of one of these blocks (LA), as the main focus, as well as the analysis and design of all three other blocks. The two major design constraints regarding the LA are the bandwidth and minimising its power consumption, which were overcome by using two bandwidth enhancement techniques. The circuit yields a bandwidth of 4:8GHz with a power consumption under 19mW. Another fundamental block is the Output Buffer. The major request for this block was maintaining relatively low transition times and improving the signal’s integrity. It has a differential output swing around 400mV with Pre-emphasis levels larger than 130%. The third block is the Received Signal Strength Indicator (RSSI). From a system point of view it is useful to have a measure of the input signal’s power so that the communication channel is used in its full potential. With a power consumption smaller than 600μW the RSSI presents an input dynamic range larger than 50 dB. The fourth block implements a Squelch function, in order to suppress unwanted output toggling due to noise. All these elements were developed in a TSMC 65nm CMOS process with a 1:2V supply voltage.
id RCAP_f61d474fe0895362ec74835b621f2a4f
oai_identifier_str oai:run.unl.pt:10362/74921
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Design of a Limiting Amplifier for an Optical ReceiverCERNLHCOptical ReceiverRadiation-tolerantLARSSIDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaThe HEP experiments that take place at CERN’s LHC demand a multi-gigabit optical link for an efficient transmission of the resulting generated data. An optoelectronic link arises as the best solution given its possibility of working at high data rates and due to fiber’s imunnity to electromagnetic noise. The design of this optical link is particularly demanding due to the stringent data rate specifications (5Gb/s), the BER specification (1012) and the constraints imposed by radiation. In HEP, radiation is always a constraint so, the Optical Receiver circuit must be hardened in order to tolerate that kind of environment - radiation-tolerant. The core of a standard optoeletronic receiver includes a Photodiode, a Transimpedance Amplifier (TIA) and a Limiting Amplifier (LA). This thesis proposes the study and implementation of one of these blocks (LA), as the main focus, as well as the analysis and design of all three other blocks. The two major design constraints regarding the LA are the bandwidth and minimising its power consumption, which were overcome by using two bandwidth enhancement techniques. The circuit yields a bandwidth of 4:8GHz with a power consumption under 19mW. Another fundamental block is the Output Buffer. The major request for this block was maintaining relatively low transition times and improving the signal’s integrity. It has a differential output swing around 400mV with Pre-emphasis levels larger than 130%. The third block is the Received Signal Strength Indicator (RSSI). From a system point of view it is useful to have a measure of the input signal’s power so that the communication channel is used in its full potential. With a power consumption smaller than 600μW the RSSI presents an input dynamic range larger than 50 dB. The fourth block implements a Squelch function, in order to suppress unwanted output toggling due to noise. All these elements were developed in a TSMC 65nm CMOS process with a 1:2V supply voltage.Paulino, NunoRUNLeitão, Renata Santos2019-07-09T14:44:37Z2018-0720182018-07-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/74921enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:34:22Zoai:run.unl.pt:10362/74921Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:35:27.674224Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Design of a Limiting Amplifier for an Optical Receiver
title Design of a Limiting Amplifier for an Optical Receiver
spellingShingle Design of a Limiting Amplifier for an Optical Receiver
Leitão, Renata Santos
CERN
LHC
Optical Receiver
Radiation-tolerant
LA
RSSI
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short Design of a Limiting Amplifier for an Optical Receiver
title_full Design of a Limiting Amplifier for an Optical Receiver
title_fullStr Design of a Limiting Amplifier for an Optical Receiver
title_full_unstemmed Design of a Limiting Amplifier for an Optical Receiver
title_sort Design of a Limiting Amplifier for an Optical Receiver
author Leitão, Renata Santos
author_facet Leitão, Renata Santos
author_role author
dc.contributor.none.fl_str_mv Paulino, Nuno
RUN
dc.contributor.author.fl_str_mv Leitão, Renata Santos
dc.subject.por.fl_str_mv CERN
LHC
Optical Receiver
Radiation-tolerant
LA
RSSI
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic CERN
LHC
Optical Receiver
Radiation-tolerant
LA
RSSI
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description The HEP experiments that take place at CERN’s LHC demand a multi-gigabit optical link for an efficient transmission of the resulting generated data. An optoelectronic link arises as the best solution given its possibility of working at high data rates and due to fiber’s imunnity to electromagnetic noise. The design of this optical link is particularly demanding due to the stringent data rate specifications (5Gb/s), the BER specification (1012) and the constraints imposed by radiation. In HEP, radiation is always a constraint so, the Optical Receiver circuit must be hardened in order to tolerate that kind of environment - radiation-tolerant. The core of a standard optoeletronic receiver includes a Photodiode, a Transimpedance Amplifier (TIA) and a Limiting Amplifier (LA). This thesis proposes the study and implementation of one of these blocks (LA), as the main focus, as well as the analysis and design of all three other blocks. The two major design constraints regarding the LA are the bandwidth and minimising its power consumption, which were overcome by using two bandwidth enhancement techniques. The circuit yields a bandwidth of 4:8GHz with a power consumption under 19mW. Another fundamental block is the Output Buffer. The major request for this block was maintaining relatively low transition times and improving the signal’s integrity. It has a differential output swing around 400mV with Pre-emphasis levels larger than 130%. The third block is the Received Signal Strength Indicator (RSSI). From a system point of view it is useful to have a measure of the input signal’s power so that the communication channel is used in its full potential. With a power consumption smaller than 600μW the RSSI presents an input dynamic range larger than 50 dB. The fourth block implements a Squelch function, in order to suppress unwanted output toggling due to noise. All these elements were developed in a TSMC 65nm CMOS process with a 1:2V supply voltage.
publishDate 2018
dc.date.none.fl_str_mv 2018-07
2018
2018-07-01T00:00:00Z
2019-07-09T14:44:37Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/74921
url http://hdl.handle.net/10362/74921
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137975473274880