Outliers impact on parameter estimation of gaussian and non-gaussian state space models: a simulation study

Detalhes bibliográficos
Autor(a) principal: Pereira, Fernanda Catarina
Data de Publicação: 2022
Outros Autores: Gonçalves, A. Manuela, Costa, Marco
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/1822/88145
Resumo: State space models are powerful and quite flexible tools that allow systems that vary significantly over time due to their formulation to be dealt with, because the models’ parameters vary over time. Assuming a known distribution of errors, in particular the Gaussian distribution, parameter estimation is usually performed by maximum likelihood. However, in time series data, it is common to have discrepant values that can impact statistical data analysis. This paper presents a simulation study with several scenarios to find out in which situations outliers can affect the maximum likelihood estimators. The results obtained were evaluated in terms of the difference between the maximum likelihood estimate and the true value of the parameter and the rate of valid estimates. It was found that both for Gaussian and exponential errors, outliers had more impact in two situations: when the sample size is small and the autoregressive parameter is close to 1, and when the sample size is large and the autoregressive parameter is close to 0.25.
id RCAP_f65af5d60407f5c84611738e315fc4e8
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/88145
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Outliers impact on parameter estimation of gaussian and non-gaussian state space models: a simulation studyOutliersParameter estimationSimulation studyState space modelsState space models are powerful and quite flexible tools that allow systems that vary significantly over time due to their formulation to be dealt with, because the models’ parameters vary over time. Assuming a known distribution of errors, in particular the Gaussian distribution, parameter estimation is usually performed by maximum likelihood. However, in time series data, it is common to have discrepant values that can impact statistical data analysis. This paper presents a simulation study with several scenarios to find out in which situations outliers can affect the maximum likelihood estimators. The results obtained were evaluated in terms of the difference between the maximum likelihood estimate and the true value of the parameter and the rate of valid estimates. It was found that both for Gaussian and exponential errors, outliers had more impact in two situations: when the sample size is small and the autoregressive parameter is close to 1, and when the sample size is large and the autoregressive parameter is close to 0.25.NNI - Nortel Networks Inc(To CHAIR - POCI-01-0145-FEDER-028247)This research was funded by FEDER/COMPETE/NORTE 2020/POCI/FCT funds through grants UID/EEA/-00147/20 13/UID/IEEA/00147/006933-SYSTEC project and To CHAIR - POCI-01- 0145-FEDER-028247. A. Manuela Gonçalves was partially financed by Portuguese Funds through FCT (Fundação para a Ciência e a Tecnologia) within the Projects UIDB/00013/2020 and UIDP/00013/2020 of CMAT-UM. Marco Costa was partially supported by The Center for Research and Development in Mathematics and Applications (CIDMA) through the Portuguese Foundation for Science and Technology (FCT - Fundação para a Ciência e a Tecnologia), references UIDB/04106/2020 and UIDP/04106/2020. F. Catarina Pereira was financed by national funds through FCT (Fundação para a Ciência e a Tecnologia) through the individual PhD research grant UI/BD/150967/2021 of CMAT-UMMDPIUniversidade do MinhoPereira, Fernanda CatarinaGonçalves, A. ManuelaCosta, Marco2022-01-012022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/88145eng2673-459110.3390/engproc2022018031https://www.mdpi.com/2673-4591/18/1/31info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-20T01:21:28Zoai:repositorium.sdum.uminho.pt:1822/88145Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:52:19.741179Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Outliers impact on parameter estimation of gaussian and non-gaussian state space models: a simulation study
title Outliers impact on parameter estimation of gaussian and non-gaussian state space models: a simulation study
spellingShingle Outliers impact on parameter estimation of gaussian and non-gaussian state space models: a simulation study
Pereira, Fernanda Catarina
Outliers
Parameter estimation
Simulation study
State space models
title_short Outliers impact on parameter estimation of gaussian and non-gaussian state space models: a simulation study
title_full Outliers impact on parameter estimation of gaussian and non-gaussian state space models: a simulation study
title_fullStr Outliers impact on parameter estimation of gaussian and non-gaussian state space models: a simulation study
title_full_unstemmed Outliers impact on parameter estimation of gaussian and non-gaussian state space models: a simulation study
title_sort Outliers impact on parameter estimation of gaussian and non-gaussian state space models: a simulation study
author Pereira, Fernanda Catarina
author_facet Pereira, Fernanda Catarina
Gonçalves, A. Manuela
Costa, Marco
author_role author
author2 Gonçalves, A. Manuela
Costa, Marco
author2_role author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Pereira, Fernanda Catarina
Gonçalves, A. Manuela
Costa, Marco
dc.subject.por.fl_str_mv Outliers
Parameter estimation
Simulation study
State space models
topic Outliers
Parameter estimation
Simulation study
State space models
description State space models are powerful and quite flexible tools that allow systems that vary significantly over time due to their formulation to be dealt with, because the models’ parameters vary over time. Assuming a known distribution of errors, in particular the Gaussian distribution, parameter estimation is usually performed by maximum likelihood. However, in time series data, it is common to have discrepant values that can impact statistical data analysis. This paper presents a simulation study with several scenarios to find out in which situations outliers can affect the maximum likelihood estimators. The results obtained were evaluated in terms of the difference between the maximum likelihood estimate and the true value of the parameter and the rate of valid estimates. It was found that both for Gaussian and exponential errors, outliers had more impact in two situations: when the sample size is small and the autoregressive parameter is close to 1, and when the sample size is large and the autoregressive parameter is close to 0.25.
publishDate 2022
dc.date.none.fl_str_mv 2022-01-01
2022-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/88145
url https://hdl.handle.net/1822/88145
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2673-4591
10.3390/engproc2022018031
https://www.mdpi.com/2673-4591/18/1/31
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137014292938752