Modelling the Airbnb listings’ price in Lisbon using local spatial regressions

Detalhes bibliográficos
Autor(a) principal: Fernandes, Ivanildo Semedo Correia
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/74240
Resumo: Dissertation presented as partial requirement for obtaining the Master’s degree in Statistics and Information Management, with a specialization in Information Analysis and Management
id RCAP_f85e5199f0211154054840eae5ad3874
oai_identifier_str oai:run.unl.pt:10362/74240
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Modelling the Airbnb listings’ price in Lisbon using local spatial regressionsAirbnbListingAccommodationLisbonPriceDissertation presented as partial requirement for obtaining the Master’s degree in Statistics and Information Management, with a specialization in Information Analysis and ManagementSharing economy market, such as Uber and Airbnb, have been growing rapidly in the last few years, providing extra income to agents from the supply side, and low costs to those in demand side. Although its adoption provided benefits for stakeholders and to the global economy of the areas in which they are inserted, several authors and politicians have been referencing the negative externalities brought with it, such as an increase in rents and real estate prices and a decrease in hotels' revenue. However, most of the externalities pointed out, were not based on any empirical analysis. The aim of this study is to analyze Airbnb market within Lisbon municipality, focusing mainly the modelling spatial variation of Airbnb listings’ price. For this purpose, it was employed an ordinary least square (OLS) model and a geographical weighted regression (GWR) model to identify the main factors affecting the Airbnb listings’ price. The results showed that the GWR model performs better than the OLS model, and it allows assessing the local impact of the explanatory variables on the Airbnb listings’ price. In conclusion, it was found that the price of the two types of Airbnb listings (entire home/apartments and private/shared rooms) are not affected by the same factors and that statistically significant differences varied across parishes within Lisbon municipality. Perhaps, there is a need to test if it is plausible to apply a unique regulatory policy considering Airbnb and Lisbon market as an aggregated concept or by Airbnb listing type and Lisbon parishes.Costa, Ana Cristina Marinho daRUNFernandes, Ivanildo Semedo Correia2019-07-02T13:34:11Z2019-05-072019-05-07T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/74240TID:202258785enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:34:13Zoai:run.unl.pt:10362/74240Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:35:23.938452Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Modelling the Airbnb listings’ price in Lisbon using local spatial regressions
title Modelling the Airbnb listings’ price in Lisbon using local spatial regressions
spellingShingle Modelling the Airbnb listings’ price in Lisbon using local spatial regressions
Fernandes, Ivanildo Semedo Correia
Airbnb
Listing
Accommodation
Lisbon
Price
title_short Modelling the Airbnb listings’ price in Lisbon using local spatial regressions
title_full Modelling the Airbnb listings’ price in Lisbon using local spatial regressions
title_fullStr Modelling the Airbnb listings’ price in Lisbon using local spatial regressions
title_full_unstemmed Modelling the Airbnb listings’ price in Lisbon using local spatial regressions
title_sort Modelling the Airbnb listings’ price in Lisbon using local spatial regressions
author Fernandes, Ivanildo Semedo Correia
author_facet Fernandes, Ivanildo Semedo Correia
author_role author
dc.contributor.none.fl_str_mv Costa, Ana Cristina Marinho da
RUN
dc.contributor.author.fl_str_mv Fernandes, Ivanildo Semedo Correia
dc.subject.por.fl_str_mv Airbnb
Listing
Accommodation
Lisbon
Price
topic Airbnb
Listing
Accommodation
Lisbon
Price
description Dissertation presented as partial requirement for obtaining the Master’s degree in Statistics and Information Management, with a specialization in Information Analysis and Management
publishDate 2019
dc.date.none.fl_str_mv 2019-07-02T13:34:11Z
2019-05-07
2019-05-07T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/74240
TID:202258785
url http://hdl.handle.net/10362/74240
identifier_str_mv TID:202258785
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137975280336896