Modelling the Airbnb listings’ price in Lisbon using local spatial regressions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/74240 |
Resumo: | Dissertation presented as partial requirement for obtaining the Master’s degree in Statistics and Information Management, with a specialization in Information Analysis and Management |
id |
RCAP_f85e5199f0211154054840eae5ad3874 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/74240 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Modelling the Airbnb listings’ price in Lisbon using local spatial regressionsAirbnbListingAccommodationLisbonPriceDissertation presented as partial requirement for obtaining the Master’s degree in Statistics and Information Management, with a specialization in Information Analysis and ManagementSharing economy market, such as Uber and Airbnb, have been growing rapidly in the last few years, providing extra income to agents from the supply side, and low costs to those in demand side. Although its adoption provided benefits for stakeholders and to the global economy of the areas in which they are inserted, several authors and politicians have been referencing the negative externalities brought with it, such as an increase in rents and real estate prices and a decrease in hotels' revenue. However, most of the externalities pointed out, were not based on any empirical analysis. The aim of this study is to analyze Airbnb market within Lisbon municipality, focusing mainly the modelling spatial variation of Airbnb listings’ price. For this purpose, it was employed an ordinary least square (OLS) model and a geographical weighted regression (GWR) model to identify the main factors affecting the Airbnb listings’ price. The results showed that the GWR model performs better than the OLS model, and it allows assessing the local impact of the explanatory variables on the Airbnb listings’ price. In conclusion, it was found that the price of the two types of Airbnb listings (entire home/apartments and private/shared rooms) are not affected by the same factors and that statistically significant differences varied across parishes within Lisbon municipality. Perhaps, there is a need to test if it is plausible to apply a unique regulatory policy considering Airbnb and Lisbon market as an aggregated concept or by Airbnb listing type and Lisbon parishes.Costa, Ana Cristina Marinho daRUNFernandes, Ivanildo Semedo Correia2019-07-02T13:34:11Z2019-05-072019-05-07T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/74240TID:202258785enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:34:13Zoai:run.unl.pt:10362/74240Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:35:23.938452Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Modelling the Airbnb listings’ price in Lisbon using local spatial regressions |
title |
Modelling the Airbnb listings’ price in Lisbon using local spatial regressions |
spellingShingle |
Modelling the Airbnb listings’ price in Lisbon using local spatial regressions Fernandes, Ivanildo Semedo Correia Airbnb Listing Accommodation Lisbon Price |
title_short |
Modelling the Airbnb listings’ price in Lisbon using local spatial regressions |
title_full |
Modelling the Airbnb listings’ price in Lisbon using local spatial regressions |
title_fullStr |
Modelling the Airbnb listings’ price in Lisbon using local spatial regressions |
title_full_unstemmed |
Modelling the Airbnb listings’ price in Lisbon using local spatial regressions |
title_sort |
Modelling the Airbnb listings’ price in Lisbon using local spatial regressions |
author |
Fernandes, Ivanildo Semedo Correia |
author_facet |
Fernandes, Ivanildo Semedo Correia |
author_role |
author |
dc.contributor.none.fl_str_mv |
Costa, Ana Cristina Marinho da RUN |
dc.contributor.author.fl_str_mv |
Fernandes, Ivanildo Semedo Correia |
dc.subject.por.fl_str_mv |
Airbnb Listing Accommodation Lisbon Price |
topic |
Airbnb Listing Accommodation Lisbon Price |
description |
Dissertation presented as partial requirement for obtaining the Master’s degree in Statistics and Information Management, with a specialization in Information Analysis and Management |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-07-02T13:34:11Z 2019-05-07 2019-05-07T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/74240 TID:202258785 |
url |
http://hdl.handle.net/10362/74240 |
identifier_str_mv |
TID:202258785 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137975280336896 |