Cell adhesion in microchannel multiple constrictions - Evidence of mass transport limitations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/130351 |
Resumo: | Biofilm growth (fouling) in microdevices is a critical concern in several industrial, engineering and health applications, particularly in novel high-performance microdevices often designed with complex geometries, narrow regions and multiple headers. Unfortunately, on these devices, the regions with local high wall shear stresses (WSS) also show high local fouling rates. Several explanations have been put forward by the scientific community, including the effect of cell transport by Brownian motion on the adhesion rate. In this work, for the first time, both WSS and convection and Brownian diffusion effects on cell adhesion were evaluated along a microchannel with intercalate constriction and expansion zones designed to mimic the hydrodynamics of the human body and biomedical devices. Convection and Brownian diffusion effects were numerically studied using a steady-state convective-diffusion model (convection, diffusion and sedimentation). According to the numerical results, the convection and Brownian diffusion effects on cell adhesion are effectively more significant in regions with high WSS. Furthermore, a good agreement was observed between experimental and predicted local Sherwood numbers, particularly at the entrance and within the multiple constrictions. However, further mechanisms should be considered to accurately predict cell adhesion in the expansion zones. The described numerical approach can be used as a way to identify possible clogging zones in microchannels, and defining solutions, even before the construction of the prototype. |
id |
RCAP_f8a8a5bd1d3039a234dd130c5798980a |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/130351 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Cell adhesion in microchannel multiple constrictions - Evidence of mass transport limitationsBiofilm growth (fouling) in microdevices is a critical concern in several industrial, engineering and health applications, particularly in novel high-performance microdevices often designed with complex geometries, narrow regions and multiple headers. Unfortunately, on these devices, the regions with local high wall shear stresses (WSS) also show high local fouling rates. Several explanations have been put forward by the scientific community, including the effect of cell transport by Brownian motion on the adhesion rate. In this work, for the first time, both WSS and convection and Brownian diffusion effects on cell adhesion were evaluated along a microchannel with intercalate constriction and expansion zones designed to mimic the hydrodynamics of the human body and biomedical devices. Convection and Brownian diffusion effects were numerically studied using a steady-state convective-diffusion model (convection, diffusion and sedimentation). According to the numerical results, the convection and Brownian diffusion effects on cell adhesion are effectively more significant in regions with high WSS. Furthermore, a good agreement was observed between experimental and predicted local Sherwood numbers, particularly at the entrance and within the multiple constrictions. However, further mechanisms should be considered to accurately predict cell adhesion in the expansion zones. The described numerical approach can be used as a way to identify possible clogging zones in microchannels, and defining solutions, even before the construction of the prototype.2021-11-202021-11-20T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/130351eng0927-776510.1016/j.colsurfb.2020.111490Soraia NevesJ. PonmozhiFilipe MergulhãoJoão Moreira de CamposJoão Mirandainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T16:10:47Zoai:repositorio-aberto.up.pt:10216/130351Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:38:32.441367Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Cell adhesion in microchannel multiple constrictions - Evidence of mass transport limitations |
title |
Cell adhesion in microchannel multiple constrictions - Evidence of mass transport limitations |
spellingShingle |
Cell adhesion in microchannel multiple constrictions - Evidence of mass transport limitations Soraia Neves |
title_short |
Cell adhesion in microchannel multiple constrictions - Evidence of mass transport limitations |
title_full |
Cell adhesion in microchannel multiple constrictions - Evidence of mass transport limitations |
title_fullStr |
Cell adhesion in microchannel multiple constrictions - Evidence of mass transport limitations |
title_full_unstemmed |
Cell adhesion in microchannel multiple constrictions - Evidence of mass transport limitations |
title_sort |
Cell adhesion in microchannel multiple constrictions - Evidence of mass transport limitations |
author |
Soraia Neves |
author_facet |
Soraia Neves J. Ponmozhi Filipe Mergulhão João Moreira de Campos João Miranda |
author_role |
author |
author2 |
J. Ponmozhi Filipe Mergulhão João Moreira de Campos João Miranda |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Soraia Neves J. Ponmozhi Filipe Mergulhão João Moreira de Campos João Miranda |
description |
Biofilm growth (fouling) in microdevices is a critical concern in several industrial, engineering and health applications, particularly in novel high-performance microdevices often designed with complex geometries, narrow regions and multiple headers. Unfortunately, on these devices, the regions with local high wall shear stresses (WSS) also show high local fouling rates. Several explanations have been put forward by the scientific community, including the effect of cell transport by Brownian motion on the adhesion rate. In this work, for the first time, both WSS and convection and Brownian diffusion effects on cell adhesion were evaluated along a microchannel with intercalate constriction and expansion zones designed to mimic the hydrodynamics of the human body and biomedical devices. Convection and Brownian diffusion effects were numerically studied using a steady-state convective-diffusion model (convection, diffusion and sedimentation). According to the numerical results, the convection and Brownian diffusion effects on cell adhesion are effectively more significant in regions with high WSS. Furthermore, a good agreement was observed between experimental and predicted local Sherwood numbers, particularly at the entrance and within the multiple constrictions. However, further mechanisms should be considered to accurately predict cell adhesion in the expansion zones. The described numerical approach can be used as a way to identify possible clogging zones in microchannels, and defining solutions, even before the construction of the prototype. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11-20 2021-11-20T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/130351 |
url |
https://hdl.handle.net/10216/130351 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0927-7765 10.1016/j.colsurfb.2020.111490 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136292204707840 |