Which nonnegative matrices are slack matrices?
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
DOI: | 10.1016/j.laa.2013.08.009 |
Texto Completo: | http://hdl.handle.net/10316/44193 https://doi.org/10.1016/j.laa.2013.08.009 |
Resumo: | In this paper we characterize the slack matrices of cones and polytopes among all nonnegative matrices. This leads to an algorithm for deciding whether a given matrix is a slack matrix. The underlying decision problem is equivalent to the polyhedral verification problem whose complexity is unknown. |
id |
RCAP_f9532f8449d2b7630aae3dd9000c5eff |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/44193 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Which nonnegative matrices are slack matrices?In this paper we characterize the slack matrices of cones and polytopes among all nonnegative matrices. This leads to an algorithm for deciding whether a given matrix is a slack matrix. The underlying decision problem is equivalent to the polyhedral verification problem whose complexity is unknown.Elsevier2013info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/44193http://hdl.handle.net/10316/44193https://doi.org/10.1016/j.laa.2013.08.009https://doi.org/10.1016/j.laa.2013.08.009enghttps://doi.org/10.1016/j.laa.2013.08.009Gouveia, JoãoGrappe, RolandKaibel, VolkerPashkovich, KanstantsinRobinson, Richard Z.Thomas, Rekha R.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2021-06-29T10:03:03Zoai:estudogeral.uc.pt:10316/44193Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:53:32.029805Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Which nonnegative matrices are slack matrices? |
title |
Which nonnegative matrices are slack matrices? |
spellingShingle |
Which nonnegative matrices are slack matrices? Which nonnegative matrices are slack matrices? Gouveia, João Gouveia, João |
title_short |
Which nonnegative matrices are slack matrices? |
title_full |
Which nonnegative matrices are slack matrices? |
title_fullStr |
Which nonnegative matrices are slack matrices? Which nonnegative matrices are slack matrices? |
title_full_unstemmed |
Which nonnegative matrices are slack matrices? Which nonnegative matrices are slack matrices? |
title_sort |
Which nonnegative matrices are slack matrices? |
author |
Gouveia, João |
author_facet |
Gouveia, João Gouveia, João Grappe, Roland Kaibel, Volker Pashkovich, Kanstantsin Robinson, Richard Z. Thomas, Rekha R. Grappe, Roland Kaibel, Volker Pashkovich, Kanstantsin Robinson, Richard Z. Thomas, Rekha R. |
author_role |
author |
author2 |
Grappe, Roland Kaibel, Volker Pashkovich, Kanstantsin Robinson, Richard Z. Thomas, Rekha R. |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Gouveia, João Grappe, Roland Kaibel, Volker Pashkovich, Kanstantsin Robinson, Richard Z. Thomas, Rekha R. |
description |
In this paper we characterize the slack matrices of cones and polytopes among all nonnegative matrices. This leads to an algorithm for deciding whether a given matrix is a slack matrix. The underlying decision problem is equivalent to the polyhedral verification problem whose complexity is unknown. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/44193 http://hdl.handle.net/10316/44193 https://doi.org/10.1016/j.laa.2013.08.009 https://doi.org/10.1016/j.laa.2013.08.009 |
url |
http://hdl.handle.net/10316/44193 https://doi.org/10.1016/j.laa.2013.08.009 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://doi.org/10.1016/j.laa.2013.08.009 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1822227877235523584 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.laa.2013.08.009 |