Recomendação de música: Comparação entre collaborative filtering e context filtering
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/8062 |
Resumo: | A massificação de serviços de música online democratizou o acesso a milhões de músicas. No entanto, é impossível para os utilizadores ouvirem e conhecerem todas essas músicas. De modo a auxiliar na sugestão sobre o que ouvir num dado momento, foram desenvolvidos sistemas que recomendam músicas ao utilizador. A técnica de Collaborative Filtering gera recomendações com base nas músicas ouvidas por utilizadores com gostos semelhantes. Apesar de apresentar um bom desempenho, vários investigadores propuseram melhoramentos aos mesmos. Um dos mais referidos é a utilização de informação contextual sobre o utilizador. A relação entre a utilização desta informação em sistemas de recomendação e o aumento da satisfação dos utilizadores foi provada por diversos investigadores. O trabalho desenvolvido nesta dissertação focou-se na comparação entre um algoritmo de recomendação por Collaborative Filtering tradicional e outro baseado em determinados elementos do contexto. Para isso foi proposto e implementado um sistema de recomendação online que integra estas duas abordagens, apoiado numa revisão da literatura. Por fim, este sistema foi utilizado numa experiência de campo online em que qualquer utilizador pôde fazer pedidos de recomendação. Estes pedidos foram servidos alternadamente por cada um dos algoritmos de recomendação, e foram registadas as avaliações dos utilizadores às músicas recomendadas de modo a aferir a sua satisfação com ambas as abordagens. Os resultados obtidos demonstram que a recomendação baseada no contexto foi superior ao Collaborative Filtering, exceção apenas para a fase inicial do funcionamento do sistema em que existiam poucos dados acerca das interações dos utilizadores com as músicas disponibilizadas |
id |
RCAP_f9b5104c098f3b2164af359ed65f162c |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/8062 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Recomendação de música: Comparação entre collaborative filtering e context filteringSistema de recomendaçãoRecomendação de músicaCollaborative filteringRecomendação baseada no contextoContext pre-filteringComparação de sistemas de recomendaçãoRecommendation systemMusic recommendationContext-based recommendationRecommendation systems comparisonA massificação de serviços de música online democratizou o acesso a milhões de músicas. No entanto, é impossível para os utilizadores ouvirem e conhecerem todas essas músicas. De modo a auxiliar na sugestão sobre o que ouvir num dado momento, foram desenvolvidos sistemas que recomendam músicas ao utilizador. A técnica de Collaborative Filtering gera recomendações com base nas músicas ouvidas por utilizadores com gostos semelhantes. Apesar de apresentar um bom desempenho, vários investigadores propuseram melhoramentos aos mesmos. Um dos mais referidos é a utilização de informação contextual sobre o utilizador. A relação entre a utilização desta informação em sistemas de recomendação e o aumento da satisfação dos utilizadores foi provada por diversos investigadores. O trabalho desenvolvido nesta dissertação focou-se na comparação entre um algoritmo de recomendação por Collaborative Filtering tradicional e outro baseado em determinados elementos do contexto. Para isso foi proposto e implementado um sistema de recomendação online que integra estas duas abordagens, apoiado numa revisão da literatura. Por fim, este sistema foi utilizado numa experiência de campo online em que qualquer utilizador pôde fazer pedidos de recomendação. Estes pedidos foram servidos alternadamente por cada um dos algoritmos de recomendação, e foram registadas as avaliações dos utilizadores às músicas recomendadas de modo a aferir a sua satisfação com ambas as abordagens. Os resultados obtidos demonstram que a recomendação baseada no contexto foi superior ao Collaborative Filtering, exceção apenas para a fase inicial do funcionamento do sistema em que existiam poucos dados acerca das interações dos utilizadores com as músicas disponibilizadasThe massification of online music services democratized the access to millions of songs. Nevertheless, it is impossible for the users to enjoy and know all those songs. In order to assist in the suggestion about what to listen in a given moment, there have been developed systems which recommend music to the user. The well-known Collaborative Filtering technique generates recommendations based on the interests of users with similar tastes. Despite presenting a good performance, several investigators proposed improvements to it. One of the most mentioned is the use of contextual information about the user. The relationship between the use of this information in recommendation systems and increased user satisfaction has been proven by several investigators. The work developed in this thesis was focused on the comparison between a Collaborative Filtering recommendation algorithm and a Context-based one. In order to achieve that, an online recommendation system that integrates these two approaches was proposed and implemented, supported by a literature review. Finally, this system was used in an online study in which any user could make music recommendation requests. These requests were served alternately by each one of the implemented algorithms and the user’s ratings to the recommendations were recorded in order to assess their satisfaction with both approaches. The results showed that the Context-based recommendation approach was superior to the Collaborative Filtering algorithm, except only for the initial phase of the system operation where there was little music ratings data.2014-12-10T18:44:20Z2013-01-01T00:00:00Z20132013-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/8062TID:201047888porCanhoto, Vicenteinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-07-07T03:23:47Zoai:repositorio.iscte-iul.pt:10071/8062Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-07-07T03:23:47Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Recomendação de música: Comparação entre collaborative filtering e context filtering |
title |
Recomendação de música: Comparação entre collaborative filtering e context filtering |
spellingShingle |
Recomendação de música: Comparação entre collaborative filtering e context filtering Canhoto, Vicente Sistema de recomendação Recomendação de música Collaborative filtering Recomendação baseada no contexto Context pre-filtering Comparação de sistemas de recomendação Recommendation system Music recommendation Context-based recommendation Recommendation systems comparison |
title_short |
Recomendação de música: Comparação entre collaborative filtering e context filtering |
title_full |
Recomendação de música: Comparação entre collaborative filtering e context filtering |
title_fullStr |
Recomendação de música: Comparação entre collaborative filtering e context filtering |
title_full_unstemmed |
Recomendação de música: Comparação entre collaborative filtering e context filtering |
title_sort |
Recomendação de música: Comparação entre collaborative filtering e context filtering |
author |
Canhoto, Vicente |
author_facet |
Canhoto, Vicente |
author_role |
author |
dc.contributor.author.fl_str_mv |
Canhoto, Vicente |
dc.subject.por.fl_str_mv |
Sistema de recomendação Recomendação de música Collaborative filtering Recomendação baseada no contexto Context pre-filtering Comparação de sistemas de recomendação Recommendation system Music recommendation Context-based recommendation Recommendation systems comparison |
topic |
Sistema de recomendação Recomendação de música Collaborative filtering Recomendação baseada no contexto Context pre-filtering Comparação de sistemas de recomendação Recommendation system Music recommendation Context-based recommendation Recommendation systems comparison |
description |
A massificação de serviços de música online democratizou o acesso a milhões de músicas. No entanto, é impossível para os utilizadores ouvirem e conhecerem todas essas músicas. De modo a auxiliar na sugestão sobre o que ouvir num dado momento, foram desenvolvidos sistemas que recomendam músicas ao utilizador. A técnica de Collaborative Filtering gera recomendações com base nas músicas ouvidas por utilizadores com gostos semelhantes. Apesar de apresentar um bom desempenho, vários investigadores propuseram melhoramentos aos mesmos. Um dos mais referidos é a utilização de informação contextual sobre o utilizador. A relação entre a utilização desta informação em sistemas de recomendação e o aumento da satisfação dos utilizadores foi provada por diversos investigadores. O trabalho desenvolvido nesta dissertação focou-se na comparação entre um algoritmo de recomendação por Collaborative Filtering tradicional e outro baseado em determinados elementos do contexto. Para isso foi proposto e implementado um sistema de recomendação online que integra estas duas abordagens, apoiado numa revisão da literatura. Por fim, este sistema foi utilizado numa experiência de campo online em que qualquer utilizador pôde fazer pedidos de recomendação. Estes pedidos foram servidos alternadamente por cada um dos algoritmos de recomendação, e foram registadas as avaliações dos utilizadores às músicas recomendadas de modo a aferir a sua satisfação com ambas as abordagens. Os resultados obtidos demonstram que a recomendação baseada no contexto foi superior ao Collaborative Filtering, exceção apenas para a fase inicial do funcionamento do sistema em que existiam poucos dados acerca das interações dos utilizadores com as músicas disponibilizadas |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-01-01T00:00:00Z 2013 2013-10 2014-12-10T18:44:20Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/8062 TID:201047888 |
url |
http://hdl.handle.net/10071/8062 |
identifier_str_mv |
TID:201047888 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817546457903792128 |