Identification and control of the AWS using neural network models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.21/10785 |
Resumo: | The Archimedes Wave Swing (AWS) is a a fully-submerged Wave Energy Converter (WEC), that is to say, a device that converts the energy of sea waves into electricity. A first prototype of the AWS has already been built and tested. In this paper, neural network (NN) models for this AWS prototype are developed. NNs are then used together with proven control strategies (phase and amplitude control, internal model control and switching control) to maximise energy production. Simulations show an yearly average electricity production increase of 160% over the performance of the original AWS controller. |
id |
RCAP_fa7898a520135827133bd5e51d441d31 |
---|---|
oai_identifier_str |
oai:repositorio.ipl.pt:10400.21/10785 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Identification and control of the AWS using neural network modelsWave energyArchimedes wave swingPhase and amplitude controlNeural networksInternal model controlSwitching controlThe Archimedes Wave Swing (AWS) is a a fully-submerged Wave Energy Converter (WEC), that is to say, a device that converts the energy of sea waves into electricity. A first prototype of the AWS has already been built and tested. In this paper, neural network (NN) models for this AWS prototype are developed. NNs are then used together with proven control strategies (phase and amplitude control, internal model control and switching control) to maximise energy production. Simulations show an yearly average electricity production increase of 160% over the performance of the original AWS controller.ElsevierRCIPLValério, DuarteMendes, Mário J. G. C.Beirão, PedroCosta, José Sá da2019-12-03T10:01:45Z2008-072008-07-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.21/10785engVALÉRIO, Duarte; [et al] – Identification and control of the AWS using neural network models. Applied Ocean Research. ISSN 0141-1187. Vol. 30, N.º 3 (2008), pp. 178-1880141-1187https://doi.org/10.1016/j.apor.2008.11.002metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-08-03T10:01:13Zoai:repositorio.ipl.pt:10400.21/10785Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:19:08.075320Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Identification and control of the AWS using neural network models |
title |
Identification and control of the AWS using neural network models |
spellingShingle |
Identification and control of the AWS using neural network models Valério, Duarte Wave energy Archimedes wave swing Phase and amplitude control Neural networks Internal model control Switching control |
title_short |
Identification and control of the AWS using neural network models |
title_full |
Identification and control of the AWS using neural network models |
title_fullStr |
Identification and control of the AWS using neural network models |
title_full_unstemmed |
Identification and control of the AWS using neural network models |
title_sort |
Identification and control of the AWS using neural network models |
author |
Valério, Duarte |
author_facet |
Valério, Duarte Mendes, Mário J. G. C. Beirão, Pedro Costa, José Sá da |
author_role |
author |
author2 |
Mendes, Mário J. G. C. Beirão, Pedro Costa, José Sá da |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
RCIPL |
dc.contributor.author.fl_str_mv |
Valério, Duarte Mendes, Mário J. G. C. Beirão, Pedro Costa, José Sá da |
dc.subject.por.fl_str_mv |
Wave energy Archimedes wave swing Phase and amplitude control Neural networks Internal model control Switching control |
topic |
Wave energy Archimedes wave swing Phase and amplitude control Neural networks Internal model control Switching control |
description |
The Archimedes Wave Swing (AWS) is a a fully-submerged Wave Energy Converter (WEC), that is to say, a device that converts the energy of sea waves into electricity. A first prototype of the AWS has already been built and tested. In this paper, neural network (NN) models for this AWS prototype are developed. NNs are then used together with proven control strategies (phase and amplitude control, internal model control and switching control) to maximise energy production. Simulations show an yearly average electricity production increase of 160% over the performance of the original AWS controller. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-07 2008-07-01T00:00:00Z 2019-12-03T10:01:45Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.21/10785 |
url |
http://hdl.handle.net/10400.21/10785 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
VALÉRIO, Duarte; [et al] – Identification and control of the AWS using neural network models. Applied Ocean Research. ISSN 0141-1187. Vol. 30, N.º 3 (2008), pp. 178-188 0141-1187 https://doi.org/10.1016/j.apor.2008.11.002 |
dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
metadata only access |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133457857642496 |