Sistema de deteção e monitorização de obstáculos para navegação autónoma marítima
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/15483 |
Resumo: | Autonomous Surface Vehicles (ASVs), operating near ship harbors or relatively close to shorelines must be able to steer away from incoming vessels and other possible obstacles, be they dynamic or not. To do this, one must implement some type of multi-target tracking and obstacle avoidance algorithms that lets the vehicle dodge obstacles. This thesis presents a radar-based multi-target tracking system developed for obstacle detection and monitoring. The proposed architecture system can use different types of sensors to improve the quality of the data. This work is focused in the radar sensor. The system was designed for ROAZ II ASV belonging to INESC TEC/ISEP and implemented in Robot Operating System (ROS) for easier integration with the already existing software. The developed aggregation, classification and tracking algorithms are presented, as well as the algorithm for estimation of possible collisions between vessels. Aggregation and classification algorithms were tested with real data and the results are presented in this work. A simulation environment could prove the correct behavior of tracking and estimation of possible collisions algorithms. |
id |
RCAP_fafe3f1c2a00cd94e7baa67e0d86bc44 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/15483 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Sistema de deteção e monitorização de obstáculos para navegação autónoma marítimaData aggregationMulti-Target TrackingKalman filterAutonomous Surface Vehicles (ASVs), operating near ship harbors or relatively close to shorelines must be able to steer away from incoming vessels and other possible obstacles, be they dynamic or not. To do this, one must implement some type of multi-target tracking and obstacle avoidance algorithms that lets the vehicle dodge obstacles. This thesis presents a radar-based multi-target tracking system developed for obstacle detection and monitoring. The proposed architecture system can use different types of sensors to improve the quality of the data. This work is focused in the radar sensor. The system was designed for ROAZ II ASV belonging to INESC TEC/ISEP and implemented in Robot Operating System (ROS) for easier integration with the already existing software. The developed aggregation, classification and tracking algorithms are presented, as well as the algorithm for estimation of possible collisions between vessels. Aggregation and classification algorithms were tested with real data and the results are presented in this work. A simulation environment could prove the correct behavior of tracking and estimation of possible collisions algorithms.Martins, Alfredo Manuel OliveiraRepositório Científico do Instituto Politécnico do PortoFreire, Daniel da Silva2020-02-17T15:31:15Z20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.22/15483TID:202342611porinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:59:35Zoai:recipp.ipp.pt:10400.22/15483Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:35:11.767103Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Sistema de deteção e monitorização de obstáculos para navegação autónoma marítima |
title |
Sistema de deteção e monitorização de obstáculos para navegação autónoma marítima |
spellingShingle |
Sistema de deteção e monitorização de obstáculos para navegação autónoma marítima Freire, Daniel da Silva Data aggregation Multi-Target Tracking Kalman filter |
title_short |
Sistema de deteção e monitorização de obstáculos para navegação autónoma marítima |
title_full |
Sistema de deteção e monitorização de obstáculos para navegação autónoma marítima |
title_fullStr |
Sistema de deteção e monitorização de obstáculos para navegação autónoma marítima |
title_full_unstemmed |
Sistema de deteção e monitorização de obstáculos para navegação autónoma marítima |
title_sort |
Sistema de deteção e monitorização de obstáculos para navegação autónoma marítima |
author |
Freire, Daniel da Silva |
author_facet |
Freire, Daniel da Silva |
author_role |
author |
dc.contributor.none.fl_str_mv |
Martins, Alfredo Manuel Oliveira Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Freire, Daniel da Silva |
dc.subject.por.fl_str_mv |
Data aggregation Multi-Target Tracking Kalman filter |
topic |
Data aggregation Multi-Target Tracking Kalman filter |
description |
Autonomous Surface Vehicles (ASVs), operating near ship harbors or relatively close to shorelines must be able to steer away from incoming vessels and other possible obstacles, be they dynamic or not. To do this, one must implement some type of multi-target tracking and obstacle avoidance algorithms that lets the vehicle dodge obstacles. This thesis presents a radar-based multi-target tracking system developed for obstacle detection and monitoring. The proposed architecture system can use different types of sensors to improve the quality of the data. This work is focused in the radar sensor. The system was designed for ROAZ II ASV belonging to INESC TEC/ISEP and implemented in Robot Operating System (ROS) for easier integration with the already existing software. The developed aggregation, classification and tracking algorithms are presented, as well as the algorithm for estimation of possible collisions between vessels. Aggregation and classification algorithms were tested with real data and the results are presented in this work. A simulation environment could prove the correct behavior of tracking and estimation of possible collisions algorithms. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 2019-01-01T00:00:00Z 2020-02-17T15:31:15Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/15483 TID:202342611 |
url |
http://hdl.handle.net/10400.22/15483 |
identifier_str_mv |
TID:202342611 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131443680509952 |