Sistema de deteção e monitorização de obstáculos para navegação autónoma marítima

Detalhes bibliográficos
Autor(a) principal: Freire, Daniel da Silva
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/15483
Resumo: Autonomous Surface Vehicles (ASVs), operating near ship harbors or relatively close to shorelines must be able to steer away from incoming vessels and other possible obstacles, be they dynamic or not. To do this, one must implement some type of multi-target tracking and obstacle avoidance algorithms that lets the vehicle dodge obstacles. This thesis presents a radar-based multi-target tracking system developed for obstacle detection and monitoring. The proposed architecture system can use different types of sensors to improve the quality of the data. This work is focused in the radar sensor. The system was designed for ROAZ II ASV belonging to INESC TEC/ISEP and implemented in Robot Operating System (ROS) for easier integration with the already existing software. The developed aggregation, classification and tracking algorithms are presented, as well as the algorithm for estimation of possible collisions between vessels. Aggregation and classification algorithms were tested with real data and the results are presented in this work. A simulation environment could prove the correct behavior of tracking and estimation of possible collisions algorithms.
id RCAP_fafe3f1c2a00cd94e7baa67e0d86bc44
oai_identifier_str oai:recipp.ipp.pt:10400.22/15483
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Sistema de deteção e monitorização de obstáculos para navegação autónoma marítimaData aggregationMulti-Target TrackingKalman filterAutonomous Surface Vehicles (ASVs), operating near ship harbors or relatively close to shorelines must be able to steer away from incoming vessels and other possible obstacles, be they dynamic or not. To do this, one must implement some type of multi-target tracking and obstacle avoidance algorithms that lets the vehicle dodge obstacles. This thesis presents a radar-based multi-target tracking system developed for obstacle detection and monitoring. The proposed architecture system can use different types of sensors to improve the quality of the data. This work is focused in the radar sensor. The system was designed for ROAZ II ASV belonging to INESC TEC/ISEP and implemented in Robot Operating System (ROS) for easier integration with the already existing software. The developed aggregation, classification and tracking algorithms are presented, as well as the algorithm for estimation of possible collisions between vessels. Aggregation and classification algorithms were tested with real data and the results are presented in this work. A simulation environment could prove the correct behavior of tracking and estimation of possible collisions algorithms.Martins, Alfredo Manuel OliveiraRepositório Científico do Instituto Politécnico do PortoFreire, Daniel da Silva2020-02-17T15:31:15Z20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.22/15483TID:202342611porinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:59:35Zoai:recipp.ipp.pt:10400.22/15483Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:35:11.767103Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Sistema de deteção e monitorização de obstáculos para navegação autónoma marítima
title Sistema de deteção e monitorização de obstáculos para navegação autónoma marítima
spellingShingle Sistema de deteção e monitorização de obstáculos para navegação autónoma marítima
Freire, Daniel da Silva
Data aggregation
Multi-Target Tracking
Kalman filter
title_short Sistema de deteção e monitorização de obstáculos para navegação autónoma marítima
title_full Sistema de deteção e monitorização de obstáculos para navegação autónoma marítima
title_fullStr Sistema de deteção e monitorização de obstáculos para navegação autónoma marítima
title_full_unstemmed Sistema de deteção e monitorização de obstáculos para navegação autónoma marítima
title_sort Sistema de deteção e monitorização de obstáculos para navegação autónoma marítima
author Freire, Daniel da Silva
author_facet Freire, Daniel da Silva
author_role author
dc.contributor.none.fl_str_mv Martins, Alfredo Manuel Oliveira
Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Freire, Daniel da Silva
dc.subject.por.fl_str_mv Data aggregation
Multi-Target Tracking
Kalman filter
topic Data aggregation
Multi-Target Tracking
Kalman filter
description Autonomous Surface Vehicles (ASVs), operating near ship harbors or relatively close to shorelines must be able to steer away from incoming vessels and other possible obstacles, be they dynamic or not. To do this, one must implement some type of multi-target tracking and obstacle avoidance algorithms that lets the vehicle dodge obstacles. This thesis presents a radar-based multi-target tracking system developed for obstacle detection and monitoring. The proposed architecture system can use different types of sensors to improve the quality of the data. This work is focused in the radar sensor. The system was designed for ROAZ II ASV belonging to INESC TEC/ISEP and implemented in Robot Operating System (ROS) for easier integration with the already existing software. The developed aggregation, classification and tracking algorithms are presented, as well as the algorithm for estimation of possible collisions between vessels. Aggregation and classification algorithms were tested with real data and the results are presented in this work. A simulation environment could prove the correct behavior of tracking and estimation of possible collisions algorithms.
publishDate 2019
dc.date.none.fl_str_mv 2019
2019-01-01T00:00:00Z
2020-02-17T15:31:15Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/15483
TID:202342611
url http://hdl.handle.net/10400.22/15483
identifier_str_mv TID:202342611
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131443680509952