Neural network explainable AI based on paraconsistent analysis: an extension
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/1822/75830 |
Resumo: | This paper explores the use of paraconsistent analysis for assessing neural networks from an explainable AI perspective. This is an early exploration paper aiming to understand whether paraconsistent analysis can be applied for understanding neural networks and whether it is worth further develop the subject in future research. The answers to these two questions are affirmative. Paraconsistent analysis provides insightful prediction visualisation through a mature formal framework that provides proper support for reasoning. The significant potential envisioned is the that paraconsistent analysis will be used for guiding neural network development projects, despite the performance issues. This paper provides two explorations. The first was a baseline experiment based on MNIST for establishing the link between paraconsistency and neural networks. The second experiment aimed to detect violence in audio files to verify whether the paraconsistent framework scales to industry level problems. The conclusion shown by this early assessment is that further research on this subject is worthful, and may eventually result in a significant contribution to the field. |
id |
RCAP_fb58a162097f0620829f7dc63b350830 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/75830 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Neural network explainable AI based on paraconsistent analysis: an extensionParaconsistent logicExplainable AINeural networkScience & TechnologyThis paper explores the use of paraconsistent analysis for assessing neural networks from an explainable AI perspective. This is an early exploration paper aiming to understand whether paraconsistent analysis can be applied for understanding neural networks and whether it is worth further develop the subject in future research. The answers to these two questions are affirmative. Paraconsistent analysis provides insightful prediction visualisation through a mature formal framework that provides proper support for reasoning. The significant potential envisioned is the that paraconsistent analysis will be used for guiding neural network development projects, despite the performance issues. This paper provides two explorations. The first was a baseline experiment based on MNIST for establishing the link between paraconsistency and neural networks. The second experiment aimed to detect violence in audio files to verify whether the paraconsistent framework scales to industry level problems. The conclusion shown by this early assessment is that further research on this subject is worthful, and may eventually result in a significant contribution to the field.This work is financed by National Funds through the Portuguese funding agency, FCT— Fundação para a Ciência e a Tecnologia within project DSAIPA/AI/0099/2019.Multidisciplinary Digital Publishing Institute (MDPI)Universidade do MinhoMarcondes, Francisco SupinoDurães, DalilaSantos, Flávio Arthur OliveiraAlmeida, J. J.Novais, Paulo2021-10-302021-10-30T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/75830engMarcondes, F.S.; Durães, D.; Santos, F.; Almeida, J.J.; Novais, P. Neural Network Explainable AI Based on Paraconsistent Analysis: An Extension. Electronics 2021, 10, 2660. https://doi.org/10.3390/electronics102126602079-929210.3390/electronics102126602660https://www.mdpi.com/2079-9292/10/21/2660info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-02T01:19:15Zoai:repositorium.sdum.uminho.pt:1822/75830Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:48:54.929654Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Neural network explainable AI based on paraconsistent analysis: an extension |
title |
Neural network explainable AI based on paraconsistent analysis: an extension |
spellingShingle |
Neural network explainable AI based on paraconsistent analysis: an extension Marcondes, Francisco Supino Paraconsistent logic Explainable AI Neural network Science & Technology |
title_short |
Neural network explainable AI based on paraconsistent analysis: an extension |
title_full |
Neural network explainable AI based on paraconsistent analysis: an extension |
title_fullStr |
Neural network explainable AI based on paraconsistent analysis: an extension |
title_full_unstemmed |
Neural network explainable AI based on paraconsistent analysis: an extension |
title_sort |
Neural network explainable AI based on paraconsistent analysis: an extension |
author |
Marcondes, Francisco Supino |
author_facet |
Marcondes, Francisco Supino Durães, Dalila Santos, Flávio Arthur Oliveira Almeida, J. J. Novais, Paulo |
author_role |
author |
author2 |
Durães, Dalila Santos, Flávio Arthur Oliveira Almeida, J. J. Novais, Paulo |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Marcondes, Francisco Supino Durães, Dalila Santos, Flávio Arthur Oliveira Almeida, J. J. Novais, Paulo |
dc.subject.por.fl_str_mv |
Paraconsistent logic Explainable AI Neural network Science & Technology |
topic |
Paraconsistent logic Explainable AI Neural network Science & Technology |
description |
This paper explores the use of paraconsistent analysis for assessing neural networks from an explainable AI perspective. This is an early exploration paper aiming to understand whether paraconsistent analysis can be applied for understanding neural networks and whether it is worth further develop the subject in future research. The answers to these two questions are affirmative. Paraconsistent analysis provides insightful prediction visualisation through a mature formal framework that provides proper support for reasoning. The significant potential envisioned is the that paraconsistent analysis will be used for guiding neural network development projects, despite the performance issues. This paper provides two explorations. The first was a baseline experiment based on MNIST for establishing the link between paraconsistency and neural networks. The second experiment aimed to detect violence in audio files to verify whether the paraconsistent framework scales to industry level problems. The conclusion shown by this early assessment is that further research on this subject is worthful, and may eventually result in a significant contribution to the field. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10-30 2021-10-30T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/75830 |
url |
https://hdl.handle.net/1822/75830 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Marcondes, F.S.; Durães, D.; Santos, F.; Almeida, J.J.; Novais, P. Neural Network Explainable AI Based on Paraconsistent Analysis: An Extension. Electronics 2021, 10, 2660. https://doi.org/10.3390/electronics10212660 2079-9292 10.3390/electronics10212660 2660 https://www.mdpi.com/2079-9292/10/21/2660 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132252268920832 |