Neural network explainable AI based on paraconsistent analysis: an extension

Detalhes bibliográficos
Autor(a) principal: Marcondes, Francisco Supino
Data de Publicação: 2021
Outros Autores: Durães, Dalila, Santos, Flávio Arthur Oliveira, Almeida, J. J., Novais, Paulo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/1822/75830
Resumo: This paper explores the use of paraconsistent analysis for assessing neural networks from an explainable AI perspective. This is an early exploration paper aiming to understand whether paraconsistent analysis can be applied for understanding neural networks and whether it is worth further develop the subject in future research. The answers to these two questions are affirmative. Paraconsistent analysis provides insightful prediction visualisation through a mature formal framework that provides proper support for reasoning. The significant potential envisioned is the that paraconsistent analysis will be used for guiding neural network development projects, despite the performance issues. This paper provides two explorations. The first was a baseline experiment based on MNIST for establishing the link between paraconsistency and neural networks. The second experiment aimed to detect violence in audio files to verify whether the paraconsistent framework scales to industry level problems. The conclusion shown by this early assessment is that further research on this subject is worthful, and may eventually result in a significant contribution to the field.
id RCAP_fb58a162097f0620829f7dc63b350830
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/75830
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Neural network explainable AI based on paraconsistent analysis: an extensionParaconsistent logicExplainable AINeural networkScience & TechnologyThis paper explores the use of paraconsistent analysis for assessing neural networks from an explainable AI perspective. This is an early exploration paper aiming to understand whether paraconsistent analysis can be applied for understanding neural networks and whether it is worth further develop the subject in future research. The answers to these two questions are affirmative. Paraconsistent analysis provides insightful prediction visualisation through a mature formal framework that provides proper support for reasoning. The significant potential envisioned is the that paraconsistent analysis will be used for guiding neural network development projects, despite the performance issues. This paper provides two explorations. The first was a baseline experiment based on MNIST for establishing the link between paraconsistency and neural networks. The second experiment aimed to detect violence in audio files to verify whether the paraconsistent framework scales to industry level problems. The conclusion shown by this early assessment is that further research on this subject is worthful, and may eventually result in a significant contribution to the field.This work is financed by National Funds through the Portuguese funding agency, FCT— Fundação para a Ciência e a Tecnologia within project DSAIPA/AI/0099/2019.Multidisciplinary Digital Publishing Institute (MDPI)Universidade do MinhoMarcondes, Francisco SupinoDurães, DalilaSantos, Flávio Arthur OliveiraAlmeida, J. J.Novais, Paulo2021-10-302021-10-30T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/75830engMarcondes, F.S.; Durães, D.; Santos, F.; Almeida, J.J.; Novais, P. Neural Network Explainable AI Based on Paraconsistent Analysis: An Extension. Electronics 2021, 10, 2660. https://doi.org/10.3390/electronics102126602079-929210.3390/electronics102126602660https://www.mdpi.com/2079-9292/10/21/2660info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-02T01:19:15Zoai:repositorium.sdum.uminho.pt:1822/75830Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:48:54.929654Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Neural network explainable AI based on paraconsistent analysis: an extension
title Neural network explainable AI based on paraconsistent analysis: an extension
spellingShingle Neural network explainable AI based on paraconsistent analysis: an extension
Marcondes, Francisco Supino
Paraconsistent logic
Explainable AI
Neural network
Science & Technology
title_short Neural network explainable AI based on paraconsistent analysis: an extension
title_full Neural network explainable AI based on paraconsistent analysis: an extension
title_fullStr Neural network explainable AI based on paraconsistent analysis: an extension
title_full_unstemmed Neural network explainable AI based on paraconsistent analysis: an extension
title_sort Neural network explainable AI based on paraconsistent analysis: an extension
author Marcondes, Francisco Supino
author_facet Marcondes, Francisco Supino
Durães, Dalila
Santos, Flávio Arthur Oliveira
Almeida, J. J.
Novais, Paulo
author_role author
author2 Durães, Dalila
Santos, Flávio Arthur Oliveira
Almeida, J. J.
Novais, Paulo
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Marcondes, Francisco Supino
Durães, Dalila
Santos, Flávio Arthur Oliveira
Almeida, J. J.
Novais, Paulo
dc.subject.por.fl_str_mv Paraconsistent logic
Explainable AI
Neural network
Science & Technology
topic Paraconsistent logic
Explainable AI
Neural network
Science & Technology
description This paper explores the use of paraconsistent analysis for assessing neural networks from an explainable AI perspective. This is an early exploration paper aiming to understand whether paraconsistent analysis can be applied for understanding neural networks and whether it is worth further develop the subject in future research. The answers to these two questions are affirmative. Paraconsistent analysis provides insightful prediction visualisation through a mature formal framework that provides proper support for reasoning. The significant potential envisioned is the that paraconsistent analysis will be used for guiding neural network development projects, despite the performance issues. This paper provides two explorations. The first was a baseline experiment based on MNIST for establishing the link between paraconsistency and neural networks. The second experiment aimed to detect violence in audio files to verify whether the paraconsistent framework scales to industry level problems. The conclusion shown by this early assessment is that further research on this subject is worthful, and may eventually result in a significant contribution to the field.
publishDate 2021
dc.date.none.fl_str_mv 2021-10-30
2021-10-30T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/75830
url https://hdl.handle.net/1822/75830
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Marcondes, F.S.; Durães, D.; Santos, F.; Almeida, J.J.; Novais, P. Neural Network Explainable AI Based on Paraconsistent Analysis: An Extension. Electronics 2021, 10, 2660. https://doi.org/10.3390/electronics10212660
2079-9292
10.3390/electronics10212660
2660
https://www.mdpi.com/2079-9292/10/21/2660
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132252268920832