Soft computing-based models for the prediction of masonry compressive strength
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/1822/77245 |
Resumo: | Masonry is a building material that has been used in the last 10.000 years and remains competitive today for the building industry. The compressive strength of masonry is used in modern design not only for gravitational and lateral loading, but also for quality control of materials and execution. Given the large variations of geometry of units and joint thickness, materials and building practices, it is not feasible to test all possible combinations. Many researchers tried to provide relations to estimate the compressive strength of masonry from the constit-uents, which remains a challenge. Similarly, modern design codes provide lower bound solutions, which have been demonstrated to be weakly correlated to observed test results in many cases. The present paper adopts soft-computing techniques to address this problem and a dataset with 401 specimens is considered. The obtained results allow to identify the most relevant parameters affecting masonry compressive strength, areas in which more experimental research is needed and expressions providing better estimates when compared to formulas existing in codes or literature. |
id |
RCAP_fbd79bd8bef6c3fc77636945644ce588 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/77245 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Soft computing-based models for the prediction of masonry compressive strengthArtificial neural networksGenetic programmingMachine learningMasonryMetaheuristic algorithmsCompressive strengthScience & TechnologyMasonry is a building material that has been used in the last 10.000 years and remains competitive today for the building industry. The compressive strength of masonry is used in modern design not only for gravitational and lateral loading, but also for quality control of materials and execution. Given the large variations of geometry of units and joint thickness, materials and building practices, it is not feasible to test all possible combinations. Many researchers tried to provide relations to estimate the compressive strength of masonry from the constit-uents, which remains a challenge. Similarly, modern design codes provide lower bound solutions, which have been demonstrated to be weakly correlated to observed test results in many cases. The present paper adopts soft-computing techniques to address this problem and a dataset with 401 specimens is considered. The obtained results allow to identify the most relevant parameters affecting masonry compressive strength, areas in which more experimental research is needed and expressions providing better estimates when compared to formulas existing in codes or literature.MU - Malayer University(undefined)ElsevierUniversidade do MinhoAsteris, Panagiotis G.Lourenço, Paulo B.Hajihassani, MohsenAdami, Chrissy-Elpida N.Lemonis, Minas E.Skentou, Athanasia D.Marques, Rui Filipe PedreiraHoang NguyenRodrigues, HugoVarum, Humberto2021-10-052021-10-05T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/77245engAsteris, P. G., Lourenço, P. B., Hajihassani, M., Adami, C.-E. N., Lemonis, M. E., Skentou, A. D., … Varum, H. (2021, December). Soft computing-based models for the prediction of masonry compressive strength. Engineering Structures. Elsevier BV. http://doi.org/10.1016/j.engstruct.2021.1132760141-029610.1016/j.engstruct.2021.113276113276https://www.sciencedirect.com/science/article/pii/S0141029621013997info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-13T01:23:56Zoai:repositorium.sdum.uminho.pt:1822/77245Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:57:55.108119Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Soft computing-based models for the prediction of masonry compressive strength |
title |
Soft computing-based models for the prediction of masonry compressive strength |
spellingShingle |
Soft computing-based models for the prediction of masonry compressive strength Asteris, Panagiotis G. Artificial neural networks Genetic programming Machine learning Masonry Metaheuristic algorithms Compressive strength Science & Technology |
title_short |
Soft computing-based models for the prediction of masonry compressive strength |
title_full |
Soft computing-based models for the prediction of masonry compressive strength |
title_fullStr |
Soft computing-based models for the prediction of masonry compressive strength |
title_full_unstemmed |
Soft computing-based models for the prediction of masonry compressive strength |
title_sort |
Soft computing-based models for the prediction of masonry compressive strength |
author |
Asteris, Panagiotis G. |
author_facet |
Asteris, Panagiotis G. Lourenço, Paulo B. Hajihassani, Mohsen Adami, Chrissy-Elpida N. Lemonis, Minas E. Skentou, Athanasia D. Marques, Rui Filipe Pedreira Hoang Nguyen Rodrigues, Hugo Varum, Humberto |
author_role |
author |
author2 |
Lourenço, Paulo B. Hajihassani, Mohsen Adami, Chrissy-Elpida N. Lemonis, Minas E. Skentou, Athanasia D. Marques, Rui Filipe Pedreira Hoang Nguyen Rodrigues, Hugo Varum, Humberto |
author2_role |
author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Asteris, Panagiotis G. Lourenço, Paulo B. Hajihassani, Mohsen Adami, Chrissy-Elpida N. Lemonis, Minas E. Skentou, Athanasia D. Marques, Rui Filipe Pedreira Hoang Nguyen Rodrigues, Hugo Varum, Humberto |
dc.subject.por.fl_str_mv |
Artificial neural networks Genetic programming Machine learning Masonry Metaheuristic algorithms Compressive strength Science & Technology |
topic |
Artificial neural networks Genetic programming Machine learning Masonry Metaheuristic algorithms Compressive strength Science & Technology |
description |
Masonry is a building material that has been used in the last 10.000 years and remains competitive today for the building industry. The compressive strength of masonry is used in modern design not only for gravitational and lateral loading, but also for quality control of materials and execution. Given the large variations of geometry of units and joint thickness, materials and building practices, it is not feasible to test all possible combinations. Many researchers tried to provide relations to estimate the compressive strength of masonry from the constit-uents, which remains a challenge. Similarly, modern design codes provide lower bound solutions, which have been demonstrated to be weakly correlated to observed test results in many cases. The present paper adopts soft-computing techniques to address this problem and a dataset with 401 specimens is considered. The obtained results allow to identify the most relevant parameters affecting masonry compressive strength, areas in which more experimental research is needed and expressions providing better estimates when compared to formulas existing in codes or literature. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10-05 2021-10-05T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/77245 |
url |
https://hdl.handle.net/1822/77245 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Asteris, P. G., Lourenço, P. B., Hajihassani, M., Adami, C.-E. N., Lemonis, M. E., Skentou, A. D., … Varum, H. (2021, December). Soft computing-based models for the prediction of masonry compressive strength. Engineering Structures. Elsevier BV. http://doi.org/10.1016/j.engstruct.2021.113276 0141-0296 10.1016/j.engstruct.2021.113276 113276 https://www.sciencedirect.com/science/article/pii/S0141029621013997 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132368992206848 |