Kernels of unbounded Toeplitz operators and factorization of symbols
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/72386 |
Resumo: | We consider kernels of unbounded Toeplitz operators in Hp(C+) in terms of a factorization of their symbols. We study the existence of a minimal Toeplitz kernel containing a given function in Hp(C+), we describe the kernels of Toeplitz operators whose symbol possesses a certain factorization involving two different Hardy spaces and we establish relations between the kernels of two operators whose symbols differ by a factor which corresponds, in the unit circle, to a non-integer power of z. We apply the results to describe the kernels of Toeplitz operators with non-vanishing piecewise continuous symbols. |
id |
RCAP_fc192c0d7593ce18ccfc334f9f134f56 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/72386 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Kernels of unbounded Toeplitz operators and factorization of symbolsToeplitz operatorsgeneralized factorizationWiener–Hopf operatorsCiências Naturais::MatemáticasScience & TechnologyWe consider kernels of unbounded Toeplitz operators in Hp(C+) in terms of a factorization of their symbols. We study the existence of a minimal Toeplitz kernel containing a given function in Hp(C+), we describe the kernels of Toeplitz operators whose symbol possesses a certain factorization involving two different Hardy spaces and we establish relations between the kernels of two operators whose symbols differ by a factor which corresponds, in the unit circle, to a non-integer power of z. We apply the results to describe the kernels of Toeplitz operators with non-vanishing piecewise continuous symbols.This work was partially supported by FCT/Portugal through UID/MAT/04459/2020. The research of M. T. Malheiro was partially supported by Portuguese Funds through FCT/Portugal within the Projects UIDB/00013/2020 and UIDP/00013/2020.SpringerUniversidade do MinhoCâmara, M. C.Malheiro, M. TeresaPartington, J. R.20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/72386eng1422-63831422-901210.1007/s00025-020-01323-zhttps://link.springer.com/article/10.1007/s00025-020-01323-zinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:17:06Zoai:repositorium.sdum.uminho.pt:1822/72386Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:09:39.870383Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Kernels of unbounded Toeplitz operators and factorization of symbols |
title |
Kernels of unbounded Toeplitz operators and factorization of symbols |
spellingShingle |
Kernels of unbounded Toeplitz operators and factorization of symbols Câmara, M. C. Toeplitz operators generalized factorization Wiener–Hopf operators Ciências Naturais::Matemáticas Science & Technology |
title_short |
Kernels of unbounded Toeplitz operators and factorization of symbols |
title_full |
Kernels of unbounded Toeplitz operators and factorization of symbols |
title_fullStr |
Kernels of unbounded Toeplitz operators and factorization of symbols |
title_full_unstemmed |
Kernels of unbounded Toeplitz operators and factorization of symbols |
title_sort |
Kernels of unbounded Toeplitz operators and factorization of symbols |
author |
Câmara, M. C. |
author_facet |
Câmara, M. C. Malheiro, M. Teresa Partington, J. R. |
author_role |
author |
author2 |
Malheiro, M. Teresa Partington, J. R. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Câmara, M. C. Malheiro, M. Teresa Partington, J. R. |
dc.subject.por.fl_str_mv |
Toeplitz operators generalized factorization Wiener–Hopf operators Ciências Naturais::Matemáticas Science & Technology |
topic |
Toeplitz operators generalized factorization Wiener–Hopf operators Ciências Naturais::Matemáticas Science & Technology |
description |
We consider kernels of unbounded Toeplitz operators in Hp(C+) in terms of a factorization of their symbols. We study the existence of a minimal Toeplitz kernel containing a given function in Hp(C+), we describe the kernels of Toeplitz operators whose symbol possesses a certain factorization involving two different Hardy spaces and we establish relations between the kernels of two operators whose symbols differ by a factor which corresponds, in the unit circle, to a non-integer power of z. We apply the results to describe the kernels of Toeplitz operators with non-vanishing piecewise continuous symbols. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 2021-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/72386 |
url |
http://hdl.handle.net/1822/72386 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1422-6383 1422-9012 10.1007/s00025-020-01323-z https://link.springer.com/article/10.1007/s00025-020-01323-z |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132523528192000 |