Kernels of unbounded Toeplitz operators and factorization of symbols

Detalhes bibliográficos
Autor(a) principal: Câmara, M. C.
Data de Publicação: 2021
Outros Autores: Malheiro, M. Teresa, Partington, J. R.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/72386
Resumo: We consider kernels of unbounded Toeplitz operators in Hp(C+) in terms of a factorization of their symbols. We study the existence of a minimal Toeplitz kernel containing a given function in Hp(C+), we describe the kernels of Toeplitz operators whose symbol possesses a certain factorization involving two different Hardy spaces and we establish relations between the kernels of two operators whose symbols differ by a factor which corresponds, in the unit circle, to a non-integer power of z. We apply the results to describe the kernels of Toeplitz operators with non-vanishing piecewise continuous symbols.
id RCAP_fc192c0d7593ce18ccfc334f9f134f56
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/72386
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Kernels of unbounded Toeplitz operators and factorization of symbolsToeplitz operatorsgeneralized factorizationWiener–Hopf operatorsCiências Naturais::MatemáticasScience & TechnologyWe consider kernels of unbounded Toeplitz operators in Hp(C+) in terms of a factorization of their symbols. We study the existence of a minimal Toeplitz kernel containing a given function in Hp(C+), we describe the kernels of Toeplitz operators whose symbol possesses a certain factorization involving two different Hardy spaces and we establish relations between the kernels of two operators whose symbols differ by a factor which corresponds, in the unit circle, to a non-integer power of z. We apply the results to describe the kernels of Toeplitz operators with non-vanishing piecewise continuous symbols.This work was partially supported by FCT/Portugal through UID/MAT/04459/2020. The research of M. T. Malheiro was partially supported by Portuguese Funds through FCT/Portugal within the Projects UIDB/00013/2020 and UIDP/00013/2020.SpringerUniversidade do MinhoCâmara, M. C.Malheiro, M. TeresaPartington, J. R.20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/72386eng1422-63831422-901210.1007/s00025-020-01323-zhttps://link.springer.com/article/10.1007/s00025-020-01323-zinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:17:06Zoai:repositorium.sdum.uminho.pt:1822/72386Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:09:39.870383Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Kernels of unbounded Toeplitz operators and factorization of symbols
title Kernels of unbounded Toeplitz operators and factorization of symbols
spellingShingle Kernels of unbounded Toeplitz operators and factorization of symbols
Câmara, M. C.
Toeplitz operators
generalized factorization
Wiener–Hopf operators
Ciências Naturais::Matemáticas
Science & Technology
title_short Kernels of unbounded Toeplitz operators and factorization of symbols
title_full Kernels of unbounded Toeplitz operators and factorization of symbols
title_fullStr Kernels of unbounded Toeplitz operators and factorization of symbols
title_full_unstemmed Kernels of unbounded Toeplitz operators and factorization of symbols
title_sort Kernels of unbounded Toeplitz operators and factorization of symbols
author Câmara, M. C.
author_facet Câmara, M. C.
Malheiro, M. Teresa
Partington, J. R.
author_role author
author2 Malheiro, M. Teresa
Partington, J. R.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Câmara, M. C.
Malheiro, M. Teresa
Partington, J. R.
dc.subject.por.fl_str_mv Toeplitz operators
generalized factorization
Wiener–Hopf operators
Ciências Naturais::Matemáticas
Science & Technology
topic Toeplitz operators
generalized factorization
Wiener–Hopf operators
Ciências Naturais::Matemáticas
Science & Technology
description We consider kernels of unbounded Toeplitz operators in Hp(C+) in terms of a factorization of their symbols. We study the existence of a minimal Toeplitz kernel containing a given function in Hp(C+), we describe the kernels of Toeplitz operators whose symbol possesses a certain factorization involving two different Hardy spaces and we establish relations between the kernels of two operators whose symbols differ by a factor which corresponds, in the unit circle, to a non-integer power of z. We apply the results to describe the kernels of Toeplitz operators with non-vanishing piecewise continuous symbols.
publishDate 2021
dc.date.none.fl_str_mv 2021
2021-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/72386
url http://hdl.handle.net/1822/72386
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1422-6383
1422-9012
10.1007/s00025-020-01323-z
https://link.springer.com/article/10.1007/s00025-020-01323-z
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132523528192000