Assessing spoofing of GPS systems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/22211 |
Resumo: | Lately, plenty of self navigation vehicles have been developed, as drones, or in the future, self driving cars. However, it has become easier to forge radionavigation signals, which can be a problem. With the growing risk of this threat, there has to be way to solve it and this thesis goal is to study various ways to mitigate this problem. For this effect, an u-blox evk-m8t GNSS (Global Navigation Satellite System) receiver was used, which is capable of returning raw unprocessed data from radio navigation signals. A raspberry pi was also used to analyze the data. This is not a linear problem, since each spoofer is unique, it is necessary to pay attention to transitions, comparing old with new data. Since each scenario is a different scenario, the variations will be observed in order to try to find a variation pattern. These variations will be tested in a neural network in order to find if it is viable to detect forged signals this way. Spoofing as a whole also has specific variations that should not be there, the unstable clock variation is the most influenceable factor. This work managed to conclude that it is possible to implement a calibration algorithm that is able to detect patterns in forged signals and distinguish them from legitimate signals. Forged signals, normally, are more incoherent in variations of signal properties and its functioning as a whole, for example, the position that would be calculated by removing a satellite from the equation. These signals also present unpredicted variations in the clock delay. |
id |
RCAP_fc5cedbcfcdc2d1e3a4fd440be2c4aa0 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/22211 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Assessing spoofing of GPS systemsRadionavigationAnti spoofingSpoofingGNSSRadionavegaçãoDefesa contra spoofingFalsificaçãoLately, plenty of self navigation vehicles have been developed, as drones, or in the future, self driving cars. However, it has become easier to forge radionavigation signals, which can be a problem. With the growing risk of this threat, there has to be way to solve it and this thesis goal is to study various ways to mitigate this problem. For this effect, an u-blox evk-m8t GNSS (Global Navigation Satellite System) receiver was used, which is capable of returning raw unprocessed data from radio navigation signals. A raspberry pi was also used to analyze the data. This is not a linear problem, since each spoofer is unique, it is necessary to pay attention to transitions, comparing old with new data. Since each scenario is a different scenario, the variations will be observed in order to try to find a variation pattern. These variations will be tested in a neural network in order to find if it is viable to detect forged signals this way. Spoofing as a whole also has specific variations that should not be there, the unstable clock variation is the most influenceable factor. This work managed to conclude that it is possible to implement a calibration algorithm that is able to detect patterns in forged signals and distinguish them from legitimate signals. Forged signals, normally, are more incoherent in variations of signal properties and its functioning as a whole, for example, the position that would be calculated by removing a satellite from the equation. These signals also present unpredicted variations in the clock delay.Ultimamente tem havido bastante desenvolvimento de viaturas que se deslocam automaticamente por sinais de radionavegação, como por exemplo drones ou, futuramente, carros autopilotados. No entanto, também é cada vez mais fácil forjar sinais de radionavegação, o que pode vir a ser um problema. Com o crescimento desta ameaça também tem de haver uma preocupação em preveni-la e o objetivo desta dissertação é estudar formas de mitigar este problema. Para tal, foi usado um receptor de GNSS (Global Navigation Satellite System), u-blox evk-m8t, capaz de devolver dados brutos retirados da leitura dos sinais sem qualquer tipo de processamento. De maneira a analisar os dados foi usado um raspberry pi. Este problema não é linear, visto que cada spoofer tem a sua especifidade, é necessário prestar atenção às transições comparando dados antigos com recentes. Como cada cenário é diferente, as variações vão ser observadas de modo a tentar encontrar um padrão de variações. Estas variações serão testadas numa rede neuronal de modo a encontrar sinais falsificados. Falsificação de sinais como um todo apresenta variações especificas que não deviam lá estar, a variação instável do relógio é o fator mais influenciável. Este trabalho conseguiu concluir que é possível implementar um algoritmo de calibração que consegue detetar padrões em sinais ilegítimos e distingui-los de sinais legítimos. Os sinais falsificados normalmente são mais incongruentes no que toca a variações de propriedades de sinal e no seu funcionamento como um todo, como por exemplo a posição que seria calculada retirando um satélite da equação. Estes sinais também apresentam variações não previstas no atraso de relógio.2021-02-25T12:15:59Z2019-12-10T00:00:00Z2019-12-102019-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/22211TID:202647609engDias, Rui Filipe Pereirainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:47:41Zoai:repositorio.iscte-iul.pt:10071/22211Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:23:10.242105Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Assessing spoofing of GPS systems |
title |
Assessing spoofing of GPS systems |
spellingShingle |
Assessing spoofing of GPS systems Dias, Rui Filipe Pereira Radionavigation Anti spoofing Spoofing GNSS Radionavegação Defesa contra spoofing Falsificação |
title_short |
Assessing spoofing of GPS systems |
title_full |
Assessing spoofing of GPS systems |
title_fullStr |
Assessing spoofing of GPS systems |
title_full_unstemmed |
Assessing spoofing of GPS systems |
title_sort |
Assessing spoofing of GPS systems |
author |
Dias, Rui Filipe Pereira |
author_facet |
Dias, Rui Filipe Pereira |
author_role |
author |
dc.contributor.author.fl_str_mv |
Dias, Rui Filipe Pereira |
dc.subject.por.fl_str_mv |
Radionavigation Anti spoofing Spoofing GNSS Radionavegação Defesa contra spoofing Falsificação |
topic |
Radionavigation Anti spoofing Spoofing GNSS Radionavegação Defesa contra spoofing Falsificação |
description |
Lately, plenty of self navigation vehicles have been developed, as drones, or in the future, self driving cars. However, it has become easier to forge radionavigation signals, which can be a problem. With the growing risk of this threat, there has to be way to solve it and this thesis goal is to study various ways to mitigate this problem. For this effect, an u-blox evk-m8t GNSS (Global Navigation Satellite System) receiver was used, which is capable of returning raw unprocessed data from radio navigation signals. A raspberry pi was also used to analyze the data. This is not a linear problem, since each spoofer is unique, it is necessary to pay attention to transitions, comparing old with new data. Since each scenario is a different scenario, the variations will be observed in order to try to find a variation pattern. These variations will be tested in a neural network in order to find if it is viable to detect forged signals this way. Spoofing as a whole also has specific variations that should not be there, the unstable clock variation is the most influenceable factor. This work managed to conclude that it is possible to implement a calibration algorithm that is able to detect patterns in forged signals and distinguish them from legitimate signals. Forged signals, normally, are more incoherent in variations of signal properties and its functioning as a whole, for example, the position that would be calculated by removing a satellite from the equation. These signals also present unpredicted variations in the clock delay. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12-10T00:00:00Z 2019-12-10 2019-09 2021-02-25T12:15:59Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/22211 TID:202647609 |
url |
http://hdl.handle.net/10071/22211 |
identifier_str_mv |
TID:202647609 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134793615540224 |