Costumer clustering in the insurance sector by means of unsupervised machine learning : an internship report
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/19789 |
Resumo: | Internship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics |
id |
RCAP_fcd6bea253da308d7d06bcc8b0ea923e |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/19789 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Costumer clustering in the insurance sector by means of unsupervised machine learning : an internship reportCustomer segmentationClusteringK-meansUnsupervised learningSegmentationInternship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced AnalyticsClustering is one of the most frequently applied techniques in machine learning. An overview of the most comon algorithms, problems and solutions is provided in this report. In modern times, customer information is a curtail success factor in the insurance industry. This work describes a way how customer data can be leveraged in order to provide useful insights that help driving business in a more profitable way. It is shown that the available data can serve as a base for customer segmentation on which further models can be built upon. The customer is investigated in three dimensions (demographic, behavior, and value) that are crossed to gain precise information about customer segments.Castelli, MauroRUNBucker, Thies2017-01-16T14:43:03Z2016-10-252016-10-25T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/19789TID:201270994enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:01:59Zoai:run.unl.pt:10362/19789Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:25:41.840719Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Costumer clustering in the insurance sector by means of unsupervised machine learning : an internship report |
title |
Costumer clustering in the insurance sector by means of unsupervised machine learning : an internship report |
spellingShingle |
Costumer clustering in the insurance sector by means of unsupervised machine learning : an internship report Bucker, Thies Customer segmentation Clustering K-means Unsupervised learning Segmentation |
title_short |
Costumer clustering in the insurance sector by means of unsupervised machine learning : an internship report |
title_full |
Costumer clustering in the insurance sector by means of unsupervised machine learning : an internship report |
title_fullStr |
Costumer clustering in the insurance sector by means of unsupervised machine learning : an internship report |
title_full_unstemmed |
Costumer clustering in the insurance sector by means of unsupervised machine learning : an internship report |
title_sort |
Costumer clustering in the insurance sector by means of unsupervised machine learning : an internship report |
author |
Bucker, Thies |
author_facet |
Bucker, Thies |
author_role |
author |
dc.contributor.none.fl_str_mv |
Castelli, Mauro RUN |
dc.contributor.author.fl_str_mv |
Bucker, Thies |
dc.subject.por.fl_str_mv |
Customer segmentation Clustering K-means Unsupervised learning Segmentation |
topic |
Customer segmentation Clustering K-means Unsupervised learning Segmentation |
description |
Internship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-10-25 2016-10-25T00:00:00Z 2017-01-16T14:43:03Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/19789 TID:201270994 |
url |
http://hdl.handle.net/10362/19789 |
identifier_str_mv |
TID:201270994 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137888047202304 |