CSA: An efficient algorithm to improve circular DNA multiple alignment

Detalhes bibliográficos
Autor(a) principal: Fernandes, F
Data de Publicação: 2009
Outros Autores: Pereira, L, Freitas, AT
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10216/109259
Resumo: BACKGROUND: The comparison of homologous sequences from different species is an essential approach to reconstruct the evolutionary history of species and of the genes they harbour in their genomes. Several complete mitochondrial and nuclear genomes are now available, increasing the importance of using multiple sequence alignment algorithms in comparative genomics. MtDNA has long been used in phylogenetic analysis and errors in the alignments can lead to errors in the interpretation of evolutionary information. Although a large number of multiple sequence alignment algorithms have been proposed to date, they all deal with linear DNA and cannot handle directly circular DNA. Researchers interested in aligning circular DNA sequences must first rotate them to the "right" place using an essentially manual process, before they can use multiple sequence alignment tools. RESULTS: In this paper we propose an efficient algorithm that identifies the most interesting region to cut circular genomes in order to improve phylogenetic analysis when using standard multiple sequence alignment algorithms. This algorithm identifies the largest chain of non-repeated longest subsequences common to a set of circular mitochondrial DNA sequences. All the sequences are then rotated and made linear for multiple alignment purposes.To evaluate the effectiveness of this new tool, three different sets of mitochondrial DNA sequences were considered. Other tests considering randomly rotated sequences were also performed. The software package Arlequin was used to evaluate the standard genetic measures of the alignments obtained with and without the use of the CSA algorithm with two well known multiple alignment algorithms, the CLUSTALW and the MAVID tools, and also the visualization tool SinicView. CONCLUSION: The results show that a circularization and rotation pre-processing step significantly improves the efficiency of public available multiple sequence alignment algorithms when used in the alignment of circular DNA sequences. The resulting alignments lead to more realistic phylogenetic comparisons between species.
id RCAP_fd42a70f0a11b2670ff167513ced1892
oai_identifier_str oai:repositorio-aberto.up.pt:10216/109259
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling CSA: An efficient algorithm to improve circular DNA multiple alignmentAlgorithmsBase SequenceComputational Biology/methodsDNA Circular/chemistryDatabases GeneticSequence Alignment/methodsSequence Analysis DNA/methodsSoftwareBACKGROUND: The comparison of homologous sequences from different species is an essential approach to reconstruct the evolutionary history of species and of the genes they harbour in their genomes. Several complete mitochondrial and nuclear genomes are now available, increasing the importance of using multiple sequence alignment algorithms in comparative genomics. MtDNA has long been used in phylogenetic analysis and errors in the alignments can lead to errors in the interpretation of evolutionary information. Although a large number of multiple sequence alignment algorithms have been proposed to date, they all deal with linear DNA and cannot handle directly circular DNA. Researchers interested in aligning circular DNA sequences must first rotate them to the "right" place using an essentially manual process, before they can use multiple sequence alignment tools. RESULTS: In this paper we propose an efficient algorithm that identifies the most interesting region to cut circular genomes in order to improve phylogenetic analysis when using standard multiple sequence alignment algorithms. This algorithm identifies the largest chain of non-repeated longest subsequences common to a set of circular mitochondrial DNA sequences. All the sequences are then rotated and made linear for multiple alignment purposes.To evaluate the effectiveness of this new tool, three different sets of mitochondrial DNA sequences were considered. Other tests considering randomly rotated sequences were also performed. The software package Arlequin was used to evaluate the standard genetic measures of the alignments obtained with and without the use of the CSA algorithm with two well known multiple alignment algorithms, the CLUSTALW and the MAVID tools, and also the visualization tool SinicView. CONCLUSION: The results show that a circularization and rotation pre-processing step significantly improves the efficiency of public available multiple sequence alignment algorithms when used in the alignment of circular DNA sequences. The resulting alignments lead to more realistic phylogenetic comparisons between species.BioMed Central20092009-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10216/109259eng1471-210510.1186/1471-2105-10-230Fernandes, FPereira, LFreitas, ATinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T14:34:05Zoai:repositorio-aberto.up.pt:10216/109259Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:04:06.983889Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv CSA: An efficient algorithm to improve circular DNA multiple alignment
title CSA: An efficient algorithm to improve circular DNA multiple alignment
spellingShingle CSA: An efficient algorithm to improve circular DNA multiple alignment
Fernandes, F
Algorithms
Base Sequence
Computational Biology/methods
DNA Circular/chemistry
Databases Genetic
Sequence Alignment/methods
Sequence Analysis DNA/methods
Software
title_short CSA: An efficient algorithm to improve circular DNA multiple alignment
title_full CSA: An efficient algorithm to improve circular DNA multiple alignment
title_fullStr CSA: An efficient algorithm to improve circular DNA multiple alignment
title_full_unstemmed CSA: An efficient algorithm to improve circular DNA multiple alignment
title_sort CSA: An efficient algorithm to improve circular DNA multiple alignment
author Fernandes, F
author_facet Fernandes, F
Pereira, L
Freitas, AT
author_role author
author2 Pereira, L
Freitas, AT
author2_role author
author
dc.contributor.author.fl_str_mv Fernandes, F
Pereira, L
Freitas, AT
dc.subject.por.fl_str_mv Algorithms
Base Sequence
Computational Biology/methods
DNA Circular/chemistry
Databases Genetic
Sequence Alignment/methods
Sequence Analysis DNA/methods
Software
topic Algorithms
Base Sequence
Computational Biology/methods
DNA Circular/chemistry
Databases Genetic
Sequence Alignment/methods
Sequence Analysis DNA/methods
Software
description BACKGROUND: The comparison of homologous sequences from different species is an essential approach to reconstruct the evolutionary history of species and of the genes they harbour in their genomes. Several complete mitochondrial and nuclear genomes are now available, increasing the importance of using multiple sequence alignment algorithms in comparative genomics. MtDNA has long been used in phylogenetic analysis and errors in the alignments can lead to errors in the interpretation of evolutionary information. Although a large number of multiple sequence alignment algorithms have been proposed to date, they all deal with linear DNA and cannot handle directly circular DNA. Researchers interested in aligning circular DNA sequences must first rotate them to the "right" place using an essentially manual process, before they can use multiple sequence alignment tools. RESULTS: In this paper we propose an efficient algorithm that identifies the most interesting region to cut circular genomes in order to improve phylogenetic analysis when using standard multiple sequence alignment algorithms. This algorithm identifies the largest chain of non-repeated longest subsequences common to a set of circular mitochondrial DNA sequences. All the sequences are then rotated and made linear for multiple alignment purposes.To evaluate the effectiveness of this new tool, three different sets of mitochondrial DNA sequences were considered. Other tests considering randomly rotated sequences were also performed. The software package Arlequin was used to evaluate the standard genetic measures of the alignments obtained with and without the use of the CSA algorithm with two well known multiple alignment algorithms, the CLUSTALW and the MAVID tools, and also the visualization tool SinicView. CONCLUSION: The results show that a circularization and rotation pre-processing step significantly improves the efficiency of public available multiple sequence alignment algorithms when used in the alignment of circular DNA sequences. The resulting alignments lead to more realistic phylogenetic comparisons between species.
publishDate 2009
dc.date.none.fl_str_mv 2009
2009-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10216/109259
url http://hdl.handle.net/10216/109259
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1471-2105
10.1186/1471-2105-10-230
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv BioMed Central
publisher.none.fl_str_mv BioMed Central
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135965494640640