Fractional State Space Analysis of Temperature Time Series, FCAA

Detalhes bibliográficos
Autor(a) principal: Machado, J. A. Tenreiro
Data de Publicação: 2015
Outros Autores: Lopes, António M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/8822
Resumo: Atmospheric temperatures characterize Earth as a slow dynamics spatiotemporal system, revealing long-memory and complex behavior. Temperature time series of 54 worldwide geographic locations are considered as representative of the Earth weather dynamics. These data are then interpreted as the time evolution of a set of state space variables describing a complex system. The data are analyzed by means of multidimensional scaling (MDS), and the fractional state space portrait (fSSP). A centennial perspective covering the period from 1910 to 2012 allows MDS to identify similarities among different Earth’s locations. The multivariate mutual information is proposed to determine the “optimal” order of the time derivative for the fSSP representation. The fSSP emerges as a valuable alternative for visualizing system dynamics.
id RCAP_fde3c7102e9ada9c28d51d7b51ad17e9
oai_identifier_str oai:recipp.ipp.pt:10400.22/8822
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Fractional State Space Analysis of Temperature Time Series, FCAAMultidimensional scalingTime seriesFractional calculusState space portraitClusteringAtmospheric temperatures characterize Earth as a slow dynamics spatiotemporal system, revealing long-memory and complex behavior. Temperature time series of 54 worldwide geographic locations are considered as representative of the Earth weather dynamics. These data are then interpreted as the time evolution of a set of state space variables describing a complex system. The data are analyzed by means of multidimensional scaling (MDS), and the fractional state space portrait (fSSP). A centennial perspective covering the period from 1910 to 2012 allows MDS to identify similarities among different Earth’s locations. The multivariate mutual information is proposed to determine the “optimal” order of the time derivative for the fSSP representation. The fSSP emerges as a valuable alternative for visualizing system dynamics.De GruyterRepositório Científico do Instituto Politécnico do PortoMachado, J. A. TenreiroLopes, António M.2016-12-14T15:45:05Z2015-122015-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/8822eng1314-222410.1515/fca-2015-0088info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:48:56Zoai:recipp.ipp.pt:10400.22/8822Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:28:39.593268Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Fractional State Space Analysis of Temperature Time Series, FCAA
title Fractional State Space Analysis of Temperature Time Series, FCAA
spellingShingle Fractional State Space Analysis of Temperature Time Series, FCAA
Machado, J. A. Tenreiro
Multidimensional scaling
Time series
Fractional calculus
State space portrait
Clustering
title_short Fractional State Space Analysis of Temperature Time Series, FCAA
title_full Fractional State Space Analysis of Temperature Time Series, FCAA
title_fullStr Fractional State Space Analysis of Temperature Time Series, FCAA
title_full_unstemmed Fractional State Space Analysis of Temperature Time Series, FCAA
title_sort Fractional State Space Analysis of Temperature Time Series, FCAA
author Machado, J. A. Tenreiro
author_facet Machado, J. A. Tenreiro
Lopes, António M.
author_role author
author2 Lopes, António M.
author2_role author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Machado, J. A. Tenreiro
Lopes, António M.
dc.subject.por.fl_str_mv Multidimensional scaling
Time series
Fractional calculus
State space portrait
Clustering
topic Multidimensional scaling
Time series
Fractional calculus
State space portrait
Clustering
description Atmospheric temperatures characterize Earth as a slow dynamics spatiotemporal system, revealing long-memory and complex behavior. Temperature time series of 54 worldwide geographic locations are considered as representative of the Earth weather dynamics. These data are then interpreted as the time evolution of a set of state space variables describing a complex system. The data are analyzed by means of multidimensional scaling (MDS), and the fractional state space portrait (fSSP). A centennial perspective covering the period from 1910 to 2012 allows MDS to identify similarities among different Earth’s locations. The multivariate mutual information is proposed to determine the “optimal” order of the time derivative for the fSSP representation. The fSSP emerges as a valuable alternative for visualizing system dynamics.
publishDate 2015
dc.date.none.fl_str_mv 2015-12
2015-12-01T00:00:00Z
2016-12-14T15:45:05Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/8822
url http://hdl.handle.net/10400.22/8822
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1314-2224
10.1515/fca-2015-0088
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv De Gruyter
publisher.none.fl_str_mv De Gruyter
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131381895266304