Spatio-temporal modelling of tornados with R-INLA, at the county-level in Texas and Ocklahona
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/34215 |
Resumo: | Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial Technologies |
id |
RCAP_fe2c97154c27ddef6c17780dc565684c |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/34215 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Spatio-temporal modelling of tornados with R-INLA, at the county-level in Texas and OcklahonaTornadosCounty-level tornado modellingR-INLAArcpyPythonPoint-processesAreal ModellingSpatio-temporal analysisSpatio-temporal modellingBayesian StatisticsDissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial TechnologiesThe United States of America is the county in the world that is more prone to tornado occurrence. This fact led many researchers, for the past years, to study and formulate theories about tornado occurrence, and which factors promote tornadogenesis. The theories around tornados are always coupled with an attempt to predict their occurrence, for better disaster alertness, and response, in case they happen. At the country level, the tornado occurrence is highly studied and understood. But the same does not happen for the state level, or county level. In this thesis, it is proposed a statistical model to characterize the occurrence of tornados in a state, given physical (terrain roughness and land-cover types)and demographic properties of its counties. This model also takes into consideration the spatial and temporal dimensions, as well as a space time interaction component. This model was applied for Oklahoma and Texas. The model with the covariates fits Texas‟ tornado occurrence, but for Oklahoma, only the spatio-temporal formulation can be applied. For Texas, the model explains the covariates as being congruent with the low-level inflow hypothesis, with tornados decreasing in zones where natural barriers for the flow can be constituted. Under the Bayesian framework, maps of spatial risk and probability of tornado occurrence for Texas and Oklahoma were computed, that can be used to make predictions in the future.Mateu Mahiques, JorgeSanta, FernandoPebesma, EdzerRUNRodrigues, Ângela Afonso2018-04-10T13:01:29Z2017-03-012017-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/34215TID:201896214enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:18:45Zoai:run.unl.pt:10362/34215Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:30:08.460042Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Spatio-temporal modelling of tornados with R-INLA, at the county-level in Texas and Ocklahona |
title |
Spatio-temporal modelling of tornados with R-INLA, at the county-level in Texas and Ocklahona |
spellingShingle |
Spatio-temporal modelling of tornados with R-INLA, at the county-level in Texas and Ocklahona Rodrigues, Ângela Afonso Tornados County-level tornado modelling R-INLA Arcpy Python Point-processes Areal Modelling Spatio-temporal analysis Spatio-temporal modelling Bayesian Statistics |
title_short |
Spatio-temporal modelling of tornados with R-INLA, at the county-level in Texas and Ocklahona |
title_full |
Spatio-temporal modelling of tornados with R-INLA, at the county-level in Texas and Ocklahona |
title_fullStr |
Spatio-temporal modelling of tornados with R-INLA, at the county-level in Texas and Ocklahona |
title_full_unstemmed |
Spatio-temporal modelling of tornados with R-INLA, at the county-level in Texas and Ocklahona |
title_sort |
Spatio-temporal modelling of tornados with R-INLA, at the county-level in Texas and Ocklahona |
author |
Rodrigues, Ângela Afonso |
author_facet |
Rodrigues, Ângela Afonso |
author_role |
author |
dc.contributor.none.fl_str_mv |
Mateu Mahiques, Jorge Santa, Fernando Pebesma, Edzer RUN |
dc.contributor.author.fl_str_mv |
Rodrigues, Ângela Afonso |
dc.subject.por.fl_str_mv |
Tornados County-level tornado modelling R-INLA Arcpy Python Point-processes Areal Modelling Spatio-temporal analysis Spatio-temporal modelling Bayesian Statistics |
topic |
Tornados County-level tornado modelling R-INLA Arcpy Python Point-processes Areal Modelling Spatio-temporal analysis Spatio-temporal modelling Bayesian Statistics |
description |
Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial Technologies |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-03-01 2017-03-01T00:00:00Z 2018-04-10T13:01:29Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/34215 TID:201896214 |
url |
http://hdl.handle.net/10362/34215 |
identifier_str_mv |
TID:201896214 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137926047596544 |