Spatio-temporal modelling of tornados with R-INLA, at the county-level in Texas and Ocklahona

Detalhes bibliográficos
Autor(a) principal: Rodrigues, Ângela Afonso
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/34215
Resumo: Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial Technologies
id RCAP_fe2c97154c27ddef6c17780dc565684c
oai_identifier_str oai:run.unl.pt:10362/34215
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Spatio-temporal modelling of tornados with R-INLA, at the county-level in Texas and OcklahonaTornadosCounty-level tornado modellingR-INLAArcpyPythonPoint-processesAreal ModellingSpatio-temporal analysisSpatio-temporal modellingBayesian StatisticsDissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial TechnologiesThe United States of America is the county in the world that is more prone to tornado occurrence. This fact led many researchers, for the past years, to study and formulate theories about tornado occurrence, and which factors promote tornadogenesis. The theories around tornados are always coupled with an attempt to predict their occurrence, for better disaster alertness, and response, in case they happen. At the country level, the tornado occurrence is highly studied and understood. But the same does not happen for the state level, or county level. In this thesis, it is proposed a statistical model to characterize the occurrence of tornados in a state, given physical (terrain roughness and land-cover types)and demographic properties of its counties. This model also takes into consideration the spatial and temporal dimensions, as well as a space time interaction component. This model was applied for Oklahoma and Texas. The model with the covariates fits Texas‟ tornado occurrence, but for Oklahoma, only the spatio-temporal formulation can be applied. For Texas, the model explains the covariates as being congruent with the low-level inflow hypothesis, with tornados decreasing in zones where natural barriers for the flow can be constituted. Under the Bayesian framework, maps of spatial risk and probability of tornado occurrence for Texas and Oklahoma were computed, that can be used to make predictions in the future.Mateu Mahiques, JorgeSanta, FernandoPebesma, EdzerRUNRodrigues, Ângela Afonso2018-04-10T13:01:29Z2017-03-012017-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/34215TID:201896214enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:18:45Zoai:run.unl.pt:10362/34215Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:30:08.460042Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Spatio-temporal modelling of tornados with R-INLA, at the county-level in Texas and Ocklahona
title Spatio-temporal modelling of tornados with R-INLA, at the county-level in Texas and Ocklahona
spellingShingle Spatio-temporal modelling of tornados with R-INLA, at the county-level in Texas and Ocklahona
Rodrigues, Ângela Afonso
Tornados
County-level tornado modelling
R-INLA
Arcpy
Python
Point-processes
Areal Modelling
Spatio-temporal analysis
Spatio-temporal modelling
Bayesian Statistics
title_short Spatio-temporal modelling of tornados with R-INLA, at the county-level in Texas and Ocklahona
title_full Spatio-temporal modelling of tornados with R-INLA, at the county-level in Texas and Ocklahona
title_fullStr Spatio-temporal modelling of tornados with R-INLA, at the county-level in Texas and Ocklahona
title_full_unstemmed Spatio-temporal modelling of tornados with R-INLA, at the county-level in Texas and Ocklahona
title_sort Spatio-temporal modelling of tornados with R-INLA, at the county-level in Texas and Ocklahona
author Rodrigues, Ângela Afonso
author_facet Rodrigues, Ângela Afonso
author_role author
dc.contributor.none.fl_str_mv Mateu Mahiques, Jorge
Santa, Fernando
Pebesma, Edzer
RUN
dc.contributor.author.fl_str_mv Rodrigues, Ângela Afonso
dc.subject.por.fl_str_mv Tornados
County-level tornado modelling
R-INLA
Arcpy
Python
Point-processes
Areal Modelling
Spatio-temporal analysis
Spatio-temporal modelling
Bayesian Statistics
topic Tornados
County-level tornado modelling
R-INLA
Arcpy
Python
Point-processes
Areal Modelling
Spatio-temporal analysis
Spatio-temporal modelling
Bayesian Statistics
description Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial Technologies
publishDate 2017
dc.date.none.fl_str_mv 2017-03-01
2017-03-01T00:00:00Z
2018-04-10T13:01:29Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/34215
TID:201896214
url http://hdl.handle.net/10362/34215
identifier_str_mv TID:201896214
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137926047596544