Modelling spatio-temporal data with multiple seasonalities: the NO2 portuguese case

Detalhes bibliográficos
Autor(a) principal: Monteiro, Andreia
Data de Publicação: 2017
Outros Autores: Menezes, Raquel, Silva, Maria Eduarda
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/35237
Resumo: This study aims at characterizing the spatial and temporal dynamics of spatio-temporal data sets, characterized by high resolution in the temporal dimension which are becoming the norm rather than the exception in many application areas, namely environmental modelling. In particular, air pollution data, such as NO2 concentration levels, often incorporate also multiple recurring patterns in time imposed by social habits, anthropogenic activities and meteorological conditions. A two-stage modelling approach is proposed which combined with a block bootstrap procedure correctly assesses uncertainty in parameters estimates and produces reliable confidence regions for the space–time phenomenon under study. The methodology provides a model that is satisfactory in terms of goodness of fit, interpretability, parsimony, prediction and forecasting capability and computational costs. The proposed framework is potentially useful for scenario drawing in many areas, including assessment of environmental impact and environmental policies, and in a myriad applications to other research fields.
id RCAP_cf2308839bd83bff29d9c585e016a5c6
oai_identifier_str oai:ria.ua.pt:10773/35237
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Modelling spatio-temporal data with multiple seasonalities: the NO2 portuguese caseGeostatisticsHourly air pollution dataMultiple seasonalitiesSpatio-temporal modellingThis study aims at characterizing the spatial and temporal dynamics of spatio-temporal data sets, characterized by high resolution in the temporal dimension which are becoming the norm rather than the exception in many application areas, namely environmental modelling. In particular, air pollution data, such as NO2 concentration levels, often incorporate also multiple recurring patterns in time imposed by social habits, anthropogenic activities and meteorological conditions. A two-stage modelling approach is proposed which combined with a block bootstrap procedure correctly assesses uncertainty in parameters estimates and produces reliable confidence regions for the space–time phenomenon under study. The methodology provides a model that is satisfactory in terms of goodness of fit, interpretability, parsimony, prediction and forecasting capability and computational costs. The proposed framework is potentially useful for scenario drawing in many areas, including assessment of environmental impact and environmental policies, and in a myriad applications to other research fields.Elsevier2022-11-21T15:58:46Z2017-01-01T00:00:00Z2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/35237eng2211-675310.1016/j.spasta.2017.04.005Monteiro, AndreiaMenezes, RaquelSilva, Maria Eduardainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:07:42Zoai:ria.ua.pt:10773/35237Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:06:15.089316Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Modelling spatio-temporal data with multiple seasonalities: the NO2 portuguese case
title Modelling spatio-temporal data with multiple seasonalities: the NO2 portuguese case
spellingShingle Modelling spatio-temporal data with multiple seasonalities: the NO2 portuguese case
Monteiro, Andreia
Geostatistics
Hourly air pollution data
Multiple seasonalities
Spatio-temporal modelling
title_short Modelling spatio-temporal data with multiple seasonalities: the NO2 portuguese case
title_full Modelling spatio-temporal data with multiple seasonalities: the NO2 portuguese case
title_fullStr Modelling spatio-temporal data with multiple seasonalities: the NO2 portuguese case
title_full_unstemmed Modelling spatio-temporal data with multiple seasonalities: the NO2 portuguese case
title_sort Modelling spatio-temporal data with multiple seasonalities: the NO2 portuguese case
author Monteiro, Andreia
author_facet Monteiro, Andreia
Menezes, Raquel
Silva, Maria Eduarda
author_role author
author2 Menezes, Raquel
Silva, Maria Eduarda
author2_role author
author
dc.contributor.author.fl_str_mv Monteiro, Andreia
Menezes, Raquel
Silva, Maria Eduarda
dc.subject.por.fl_str_mv Geostatistics
Hourly air pollution data
Multiple seasonalities
Spatio-temporal modelling
topic Geostatistics
Hourly air pollution data
Multiple seasonalities
Spatio-temporal modelling
description This study aims at characterizing the spatial and temporal dynamics of spatio-temporal data sets, characterized by high resolution in the temporal dimension which are becoming the norm rather than the exception in many application areas, namely environmental modelling. In particular, air pollution data, such as NO2 concentration levels, often incorporate also multiple recurring patterns in time imposed by social habits, anthropogenic activities and meteorological conditions. A two-stage modelling approach is proposed which combined with a block bootstrap procedure correctly assesses uncertainty in parameters estimates and produces reliable confidence regions for the space–time phenomenon under study. The methodology provides a model that is satisfactory in terms of goodness of fit, interpretability, parsimony, prediction and forecasting capability and computational costs. The proposed framework is potentially useful for scenario drawing in many areas, including assessment of environmental impact and environmental policies, and in a myriad applications to other research fields.
publishDate 2017
dc.date.none.fl_str_mv 2017-01-01T00:00:00Z
2017
2022-11-21T15:58:46Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/35237
url http://hdl.handle.net/10773/35237
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2211-6753
10.1016/j.spasta.2017.04.005
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137717342175232