Box-Jenkin’s Methodology in Python for Stock Managing
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/153106 |
Resumo: | At the end of 2019, the world had shaken when social media communicated that a potential worldwide pandemic might be beginning. Early in 2020, most countries worldwide affected by the pandemic declared a state of emergency, announcing that people could not leave their houses. When confronted with these security policies, many companies faced new management challenges regarding physical and technological resources. Companies had to adapt their work style, allowing its employees to work remotely (some companies even adopted a hybrid work when the restrictions ended/ where on a break), on the other they had to adapt its technological resources for the information to be accessible for every employer with safety. For this purpose, large companies had to spend thousands or millions quickly adapting its information systems – both for acquiring more potent virtual private network and improve their capacity in terms of the online channel integration and invoice systems – as this was the only available channel to buy non-essential goods. This thesis addressed the possibility of using Machine Learning (ML) to build a predictive model to forecast which will be the sales behavior over time, by analysing a time series. That possibility consists in building a model for stock managing, that would be updated daily (with the sales till the previous day), and automatically predicts the future sales behavior, allowing an automated stock management process – not only without shortages but also without overstocking. As a result, it was achieved a fully automated ML model, using a S3 bucket (from amazon web services) connected to a Databricks instance (launched through the S3 bucket), that has the capacity to receive the sales daily, treat the data and forecast the future data points of this sales time series. |
id |
RCAP_fe49f9ef47cc1cf711da7f4eb2fcb7a4 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/153106 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Box-Jenkin’s Methodology in Python for Stock ManagingTime SeriesMachine LearningPredictive ModelsBox-Jenkin’s MethodologyStock ManagingDomínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e TecnologiasAt the end of 2019, the world had shaken when social media communicated that a potential worldwide pandemic might be beginning. Early in 2020, most countries worldwide affected by the pandemic declared a state of emergency, announcing that people could not leave their houses. When confronted with these security policies, many companies faced new management challenges regarding physical and technological resources. Companies had to adapt their work style, allowing its employees to work remotely (some companies even adopted a hybrid work when the restrictions ended/ where on a break), on the other they had to adapt its technological resources for the information to be accessible for every employer with safety. For this purpose, large companies had to spend thousands or millions quickly adapting its information systems – both for acquiring more potent virtual private network and improve their capacity in terms of the online channel integration and invoice systems – as this was the only available channel to buy non-essential goods. This thesis addressed the possibility of using Machine Learning (ML) to build a predictive model to forecast which will be the sales behavior over time, by analysing a time series. That possibility consists in building a model for stock managing, that would be updated daily (with the sales till the previous day), and automatically predicts the future sales behavior, allowing an automated stock management process – not only without shortages but also without overstocking. As a result, it was achieved a fully automated ML model, using a S3 bucket (from amazon web services) connected to a Databricks instance (launched through the S3 bucket), that has the capacity to receive the sales daily, treat the data and forecast the future data points of this sales time series.No final do ano de 2019 o mundo tremeu quando a comunicação social comunicou o possível começo duma pandemia mundial. No início do ano de 2020, a maior parte dos Países do Mundo, afetados pela pandemia, decretaram estados de calamidade e ordenaram que as suas populações não pudessem sair de casa. Com estas medidas para contenção da pandemia, as empresas enfrentaram novos desafios em termos da sua gestão – tanto em termos da gestão dos recursos físicos, como tecnológicos. Se por um lado as empresas tiveram que adaptar o seu modo de trabalho de modo que os seus colaboradores pudessem trabalhar remotamente (levando a que algumas adotassem mesmo o trabalho híbrido no pós-pandemia), por outro tiveram que adaptar os seus recursos tecnológicos para que a informação estivesse acessível a todos os trabalhadores, com segurança. Neste âmbito, grandes empresas tiveram que gastar milhares ou milhões na rápida adaptação dos seus sistemas de informação – tanto para terem network privada virtual mais potente, como para aumentarem a capacidade dos seus sistemas de integração e faturação do canal de vendas online – pois este era o único meio de venda possível para bens não essenciais. Deste modo foi abordada a possibilidade de, através de um modelo de Machine Learning, contruir um modelo preditivo que analise o comportamento das vendas ao longo do tempo, analisando uma série temporal. Essa possibilidade passa por desenvolver um modelo de gestão de stocks que seria atualizado todos os dias (com as vendas até ao dia anterior), e automaticamente prever o comportamento futuro, permitindo assim que haja uma gestão automatizada de stocks – sem ruturas e encomendas maiores do que o previsto. Como resultado, foi desenvolvido um modelo de ML totalmente automatizado, tendo sido utilizado um S3 bucket (serviço da Amazon Web Services) conectado a uma instância de Databricks, com a capacidade de ingerir dados diariamente, fazer o seu tratamento e prever as futuras vendas.Matos, AnaRUNGomes, Manuel Romão dos Santos2023-05-24T11:30:52Z2022-102022-10-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/153106enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:35:42Zoai:run.unl.pt:10362/153106Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:55:10.940734Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Box-Jenkin’s Methodology in Python for Stock Managing |
title |
Box-Jenkin’s Methodology in Python for Stock Managing |
spellingShingle |
Box-Jenkin’s Methodology in Python for Stock Managing Gomes, Manuel Romão dos Santos Time Series Machine Learning Predictive Models Box-Jenkin’s Methodology Stock Managing Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias |
title_short |
Box-Jenkin’s Methodology in Python for Stock Managing |
title_full |
Box-Jenkin’s Methodology in Python for Stock Managing |
title_fullStr |
Box-Jenkin’s Methodology in Python for Stock Managing |
title_full_unstemmed |
Box-Jenkin’s Methodology in Python for Stock Managing |
title_sort |
Box-Jenkin’s Methodology in Python for Stock Managing |
author |
Gomes, Manuel Romão dos Santos |
author_facet |
Gomes, Manuel Romão dos Santos |
author_role |
author |
dc.contributor.none.fl_str_mv |
Matos, Ana RUN |
dc.contributor.author.fl_str_mv |
Gomes, Manuel Romão dos Santos |
dc.subject.por.fl_str_mv |
Time Series Machine Learning Predictive Models Box-Jenkin’s Methodology Stock Managing Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias |
topic |
Time Series Machine Learning Predictive Models Box-Jenkin’s Methodology Stock Managing Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias |
description |
At the end of 2019, the world had shaken when social media communicated that a potential worldwide pandemic might be beginning. Early in 2020, most countries worldwide affected by the pandemic declared a state of emergency, announcing that people could not leave their houses. When confronted with these security policies, many companies faced new management challenges regarding physical and technological resources. Companies had to adapt their work style, allowing its employees to work remotely (some companies even adopted a hybrid work when the restrictions ended/ where on a break), on the other they had to adapt its technological resources for the information to be accessible for every employer with safety. For this purpose, large companies had to spend thousands or millions quickly adapting its information systems – both for acquiring more potent virtual private network and improve their capacity in terms of the online channel integration and invoice systems – as this was the only available channel to buy non-essential goods. This thesis addressed the possibility of using Machine Learning (ML) to build a predictive model to forecast which will be the sales behavior over time, by analysing a time series. That possibility consists in building a model for stock managing, that would be updated daily (with the sales till the previous day), and automatically predicts the future sales behavior, allowing an automated stock management process – not only without shortages but also without overstocking. As a result, it was achieved a fully automated ML model, using a S3 bucket (from amazon web services) connected to a Databricks instance (launched through the S3 bucket), that has the capacity to receive the sales daily, treat the data and forecast the future data points of this sales time series. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-10 2022-10-01T00:00:00Z 2023-05-24T11:30:52Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/153106 |
url |
http://hdl.handle.net/10362/153106 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138139469512704 |