[en] A COMPARISON STUDY OF BOX & JENKINS ARMA (P,Q) STRUCTURAL IDENTIFICATION PROCEDURES

Detalhes bibliográficos
Autor(a) principal: LILIAN MANOEL DE MENEZES WILLENBOCKEL
Data de Publicação: 2009
Tipo de documento: Outros
Idioma: por
Título da fonte: Repositório Institucional da PUC-RIO (Projeto Maxwell)
Texto Completo: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=13986@1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=13986@2
http://doi.org/10.17771/PUCRio.acad.13986
Resumo: [pt] A modelagem Box & Jenkins (1970) para previsão de séries temporais univariadas, de acordo com a proposta inicial das autoras, é composta de quatro etapas: Indentificação de Modelos, Estimação dos Parâmetros, Testes Estatísticos para Validação do Modelo e Previsão. Dentre as etapas citadas, a Identificação de Modelos é a de maior dificuldade na utilização prática da metodologia Box & Jenkins, é baseada no uso de estimadores para as funções de autocorrelação parcial da série, não apresenta dificuldades no caso específico de modelos puros. Porém no tratamento de modelos mistos (ARMA), onde há presença das duas componentes (AR e MA), a utilização destes estimadores muitas vezes não leva a conclusões definitivas quanto à estrutura a ser considerada. Numa tentativa de diminuição da dificuldade para indentificar modelos ARMA (p, q), existem na literatura especializada várias propostas alternativas de métodos de identificação. Este trabalho se propõe a uma análise crítica de alguns métodos e dos resultados obtidos a partir destes. A análise foi concentrada nos seguintes métodos: - Função de Autocorrelação Inversa, (Cleveland, 1972) e (Chatfield, 1979); - R & S Arrays (Gray, Kelley e Mc. Intire, 1978); - Corner Method (Béguin, Gourieroux e Monfort, 1980); - Função de Autocorrelação Extendida (Tião e Tsay, 1982); - Função de Autocorrelação Parcial Generalizada (Glasbey, 1982); cujos desempenhos foram comparados entre si e com a metodologia tradicional. Foram consideradas cinco estruturas: AR(1), AR(2), MA(1), MA(2) e ARMA(1,1). Para cada estrutura foram escolhidos três modelos, utilizando como critério sua localização na região de estacionariedade / inversibilidade. Foram simuladas quinze séries para cada modelo, variando-se a semente e o nível da série, totalizando desta forma, 225 séries, que foram submetidas a cada um dos métodos em estudo e cujos resultados foram comparados e analisados. A partir dos resultados obtidos chegou-se a várias conclusões úteis na prática quanto à utilização de cada método, porém estas conclusões são apenas relativas à amostra utilizada, pois para se chegar a conclusões definitivas o tamanho da amostra deveria ser maior e critérios estatísticos de análise poderiam ser utilizadas. Dentre as conclusões obtidas destaca-se a seguinte: embora alguns métodos alternativos de identificação tenham apresentado grande melhoria em relação ao método tradicional, o problema da identificação ainda não se encontra resolvido, assim muitas das tentativas de Box & Jenkins Automáticos tornam-se sensíveis a falhar e a presença do analista torna-se necessária.
id PUC_RIO-1_1b0a30277ec3ed6900e331a6c5ddcc0f
oai_identifier_str oai:MAXWELL.puc-rio.br:13986
network_acronym_str PUC_RIO-1
network_name_str Repositório Institucional da PUC-RIO (Projeto Maxwell)
repository_id_str 534
spelling [en] A COMPARISON STUDY OF BOX & JENKINS ARMA (P,Q) STRUCTURAL IDENTIFICATION PROCEDURES [pt] COMPARAÇÃO DE MÉTODOS DE IDENTIFICAÇÃO ESTRUTURAL DE MODELOS DE ARMA (P,Q) DE BOX & JENKINS [pt] MODELO BOX E JENKINS[pt] METODO DE IDENTIFICACAO[en] BOX AND JENKINS[pt] A modelagem Box & Jenkins (1970) para previsão de séries temporais univariadas, de acordo com a proposta inicial das autoras, é composta de quatro etapas: Indentificação de Modelos, Estimação dos Parâmetros, Testes Estatísticos para Validação do Modelo e Previsão. Dentre as etapas citadas, a Identificação de Modelos é a de maior dificuldade na utilização prática da metodologia Box & Jenkins, é baseada no uso de estimadores para as funções de autocorrelação parcial da série, não apresenta dificuldades no caso específico de modelos puros. Porém no tratamento de modelos mistos (ARMA), onde há presença das duas componentes (AR e MA), a utilização destes estimadores muitas vezes não leva a conclusões definitivas quanto à estrutura a ser considerada. Numa tentativa de diminuição da dificuldade para indentificar modelos ARMA (p, q), existem na literatura especializada várias propostas alternativas de métodos de identificação. Este trabalho se propõe a uma análise crítica de alguns métodos e dos resultados obtidos a partir destes. A análise foi concentrada nos seguintes métodos: - Função de Autocorrelação Inversa, (Cleveland, 1972) e (Chatfield, 1979); - R & S Arrays (Gray, Kelley e Mc. Intire, 1978); - Corner Method (Béguin, Gourieroux e Monfort, 1980); - Função de Autocorrelação Extendida (Tião e Tsay, 1982); - Função de Autocorrelação Parcial Generalizada (Glasbey, 1982); cujos desempenhos foram comparados entre si e com a metodologia tradicional. Foram consideradas cinco estruturas: AR(1), AR(2), MA(1), MA(2) e ARMA(1,1). Para cada estrutura foram escolhidos três modelos, utilizando como critério sua localização na região de estacionariedade / inversibilidade. Foram simuladas quinze séries para cada modelo, variando-se a semente e o nível da série, totalizando desta forma, 225 séries, que foram submetidas a cada um dos métodos em estudo e cujos resultados foram comparados e analisados. A partir dos resultados obtidos chegou-se a várias conclusões úteis na prática quanto à utilização de cada método, porém estas conclusões são apenas relativas à amostra utilizada, pois para se chegar a conclusões definitivas o tamanho da amostra deveria ser maior e critérios estatísticos de análise poderiam ser utilizadas. Dentre as conclusões obtidas destaca-se a seguinte: embora alguns métodos alternativos de identificação tenham apresentado grande melhoria em relação ao método tradicional, o problema da identificação ainda não se encontra resolvido, assim muitas das tentativas de Box & Jenkins Automáticos tornam-se sensíveis a falhar e a presença do analista torna-se necessária.[en] The dificulty of the Box and Jenkins approach for univariante time series forecasting lies in the stage of identification. The traditional methodology based on the estimators of the autocorrelation and partial autocorrelation functions, to mixed models(ARMA), usually leads to wrong structural identification. As an attempt to solve this problem, many authors have porposed alternative identification methods. This work intends to make a critical analysis was concentrated on the following methods: - Inverse Autocorrelation Function, (Cleveland, 1972) and (Chatfield, 1979); - R&S Arrays, (Gray, Kelley and Mc. Intire, 1978); - The Corner Method, (Beguin, Gourieroux and Monfort, 1980); - Extended Autocorrelation Function (Tiao and Tsay, 1982); - General Partial Autocorrelation Function (Glasbey, 1982); their performance were compared with each other and with the traditional method. Five structures have been studied: AR(1), AR(2), MA(1), MA(2) and ARMA(1,1). For each of them three models have been chosen /considering their position in the stationary and invertible regions. Fifteen series have been simulated for each model, varying levels and their seeds, adding up to 225 series, which were submitted to each method. The results led to several conclusions, which are restricted to the sample studied; the most important was: Although some of these methods yield to better results than the traditional ones, the problem of identification is still unsolved. So, any kind of Automatic Box and Jenkins can not be recommended.MAXWELLREINALDO CASTRO SOUZAREINALDO CASTRO SOUZAREINALDO CASTRO SOUZALILIAN MANOEL DE MENEZES WILLENBOCKEL2009-08-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/otherhttps://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=13986@1https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=13986@2http://doi.org/10.17771/PUCRio.acad.13986porreponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)instacron:PUC_RIOinfo:eu-repo/semantics/openAccess2017-09-14T00:00:00Zoai:MAXWELL.puc-rio.br:13986Repositório InstitucionalPRIhttps://www.maxwell.vrac.puc-rio.br/ibict.phpopendoar:5342017-09-14T00:00Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)false
dc.title.none.fl_str_mv [en] A COMPARISON STUDY OF BOX & JENKINS ARMA (P,Q) STRUCTURAL IDENTIFICATION PROCEDURES
[pt] COMPARAÇÃO DE MÉTODOS DE IDENTIFICAÇÃO ESTRUTURAL DE MODELOS DE ARMA (P,Q) DE BOX & JENKINS
title [en] A COMPARISON STUDY OF BOX & JENKINS ARMA (P,Q) STRUCTURAL IDENTIFICATION PROCEDURES
spellingShingle [en] A COMPARISON STUDY OF BOX & JENKINS ARMA (P,Q) STRUCTURAL IDENTIFICATION PROCEDURES
LILIAN MANOEL DE MENEZES WILLENBOCKEL
[pt] MODELO BOX E JENKINS
[pt] METODO DE IDENTIFICACAO
[en] BOX AND JENKINS
title_short [en] A COMPARISON STUDY OF BOX & JENKINS ARMA (P,Q) STRUCTURAL IDENTIFICATION PROCEDURES
title_full [en] A COMPARISON STUDY OF BOX & JENKINS ARMA (P,Q) STRUCTURAL IDENTIFICATION PROCEDURES
title_fullStr [en] A COMPARISON STUDY OF BOX & JENKINS ARMA (P,Q) STRUCTURAL IDENTIFICATION PROCEDURES
title_full_unstemmed [en] A COMPARISON STUDY OF BOX & JENKINS ARMA (P,Q) STRUCTURAL IDENTIFICATION PROCEDURES
title_sort [en] A COMPARISON STUDY OF BOX & JENKINS ARMA (P,Q) STRUCTURAL IDENTIFICATION PROCEDURES
author LILIAN MANOEL DE MENEZES WILLENBOCKEL
author_facet LILIAN MANOEL DE MENEZES WILLENBOCKEL
author_role author
dc.contributor.none.fl_str_mv REINALDO CASTRO SOUZA
REINALDO CASTRO SOUZA
REINALDO CASTRO SOUZA
dc.contributor.author.fl_str_mv LILIAN MANOEL DE MENEZES WILLENBOCKEL
dc.subject.por.fl_str_mv [pt] MODELO BOX E JENKINS
[pt] METODO DE IDENTIFICACAO
[en] BOX AND JENKINS
topic [pt] MODELO BOX E JENKINS
[pt] METODO DE IDENTIFICACAO
[en] BOX AND JENKINS
description [pt] A modelagem Box & Jenkins (1970) para previsão de séries temporais univariadas, de acordo com a proposta inicial das autoras, é composta de quatro etapas: Indentificação de Modelos, Estimação dos Parâmetros, Testes Estatísticos para Validação do Modelo e Previsão. Dentre as etapas citadas, a Identificação de Modelos é a de maior dificuldade na utilização prática da metodologia Box & Jenkins, é baseada no uso de estimadores para as funções de autocorrelação parcial da série, não apresenta dificuldades no caso específico de modelos puros. Porém no tratamento de modelos mistos (ARMA), onde há presença das duas componentes (AR e MA), a utilização destes estimadores muitas vezes não leva a conclusões definitivas quanto à estrutura a ser considerada. Numa tentativa de diminuição da dificuldade para indentificar modelos ARMA (p, q), existem na literatura especializada várias propostas alternativas de métodos de identificação. Este trabalho se propõe a uma análise crítica de alguns métodos e dos resultados obtidos a partir destes. A análise foi concentrada nos seguintes métodos: - Função de Autocorrelação Inversa, (Cleveland, 1972) e (Chatfield, 1979); - R & S Arrays (Gray, Kelley e Mc. Intire, 1978); - Corner Method (Béguin, Gourieroux e Monfort, 1980); - Função de Autocorrelação Extendida (Tião e Tsay, 1982); - Função de Autocorrelação Parcial Generalizada (Glasbey, 1982); cujos desempenhos foram comparados entre si e com a metodologia tradicional. Foram consideradas cinco estruturas: AR(1), AR(2), MA(1), MA(2) e ARMA(1,1). Para cada estrutura foram escolhidos três modelos, utilizando como critério sua localização na região de estacionariedade / inversibilidade. Foram simuladas quinze séries para cada modelo, variando-se a semente e o nível da série, totalizando desta forma, 225 séries, que foram submetidas a cada um dos métodos em estudo e cujos resultados foram comparados e analisados. A partir dos resultados obtidos chegou-se a várias conclusões úteis na prática quanto à utilização de cada método, porém estas conclusões são apenas relativas à amostra utilizada, pois para se chegar a conclusões definitivas o tamanho da amostra deveria ser maior e critérios estatísticos de análise poderiam ser utilizadas. Dentre as conclusões obtidas destaca-se a seguinte: embora alguns métodos alternativos de identificação tenham apresentado grande melhoria em relação ao método tradicional, o problema da identificação ainda não se encontra resolvido, assim muitas das tentativas de Box & Jenkins Automáticos tornam-se sensíveis a falhar e a presença do analista torna-se necessária.
publishDate 2009
dc.date.none.fl_str_mv 2009-08-13
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/other
format other
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=13986@1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=13986@2
http://doi.org/10.17771/PUCRio.acad.13986
url https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=13986@1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=13986@2
http://doi.org/10.17771/PUCRio.acad.13986
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv MAXWELL
publisher.none.fl_str_mv MAXWELL
dc.source.none.fl_str_mv reponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)
instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
instacron:PUC_RIO
instname_str Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
instacron_str PUC_RIO
institution PUC_RIO
reponame_str Repositório Institucional da PUC-RIO (Projeto Maxwell)
collection Repositório Institucional da PUC-RIO (Projeto Maxwell)
repository.name.fl_str_mv Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
repository.mail.fl_str_mv
_version_ 1814822572478431232