Elastic modulus evaluation of Titania nanotubes obtained by anodic oxidation

Detalhes bibliográficos
Autor(a) principal: Santos,Luciane S.
Data de Publicação: 2014
Outros Autores: Oliveira,Nilson T. C., Lepienski,Carlos M., Marino,Cláudia E. B., Kuromoto,Neide K
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Matéria (Rio de Janeiro. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762014000100006
Resumo: The use of titania (TiO2) nanotubes is becoming one of the most attractive techniques as surface treatment for implants due its combination of morphology (that accelerates osteoblast adhesion and proliferation), bioactivity and possibility of being use as a drug vehicle. Anodic oxidation is one of the cheapest and simplest approaches to obtain highly ordered nanotubes. Parameters such as applied potential, reaction time and fluoride containing in the electrolyte define the nanotubes morphology. However, the mechanical properties of the nanotubes layer do not have been completely elucidated and they play a crucial role in the implant long term stability. The objective of this research was to obtain TiO2nanotubes using anodic oxidation and to determine their elastic modulus and hardness. The TiO2nanotubes layer was obtained in a fluoride containing electrolyte for 1 hour, one group at 15 V and another one at 25 V. The TiO2nanotubes morphology was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The elastic modulus and hardness were evaluated by nanoindentation experiments using a spherical tip. SEM images showed highly ordered nanotubes on all titanium surfaces and it was observed that the nanotubes diameters are directly related with the applied potential. Nanotubes diameters are 66 ± 9 nm and 131 ± 22 nm for nanotubes obtained at 15 V and 25 V, respectively. Nanoindentation test results showed a decrease in the elastic modulus comparing with titanium reference and these values approach to cortical bone elastic modulus. These results demonstrate that it was possible to obtain a homogeneous TiO2nanotubes layer that has mechanical properties adequate to improve implant long-term stability.
id RLAM-1_475cb5807cfcfae3228b78558f4c7ac5
oai_identifier_str oai:scielo:S1517-70762014000100006
network_acronym_str RLAM-1
network_name_str Matéria (Rio de Janeiro. Online)
repository_id_str
spelling Elastic modulus evaluation of Titania nanotubes obtained by anodic oxidationTitania nanotubesanodic oxidationindentationelastic modulus. The use of titania (TiO2) nanotubes is becoming one of the most attractive techniques as surface treatment for implants due its combination of morphology (that accelerates osteoblast adhesion and proliferation), bioactivity and possibility of being use as a drug vehicle. Anodic oxidation is one of the cheapest and simplest approaches to obtain highly ordered nanotubes. Parameters such as applied potential, reaction time and fluoride containing in the electrolyte define the nanotubes morphology. However, the mechanical properties of the nanotubes layer do not have been completely elucidated and they play a crucial role in the implant long term stability. The objective of this research was to obtain TiO2nanotubes using anodic oxidation and to determine their elastic modulus and hardness. The TiO2nanotubes layer was obtained in a fluoride containing electrolyte for 1 hour, one group at 15 V and another one at 25 V. The TiO2nanotubes morphology was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The elastic modulus and hardness were evaluated by nanoindentation experiments using a spherical tip. SEM images showed highly ordered nanotubes on all titanium surfaces and it was observed that the nanotubes diameters are directly related with the applied potential. Nanotubes diameters are 66 ± 9 nm and 131 ± 22 nm for nanotubes obtained at 15 V and 25 V, respectively. Nanoindentation test results showed a decrease in the elastic modulus comparing with titanium reference and these values approach to cortical bone elastic modulus. These results demonstrate that it was possible to obtain a homogeneous TiO2nanotubes layer that has mechanical properties adequate to improve implant long-term stability.Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiroem cooperação com a Associação Brasileira do Hidrogênio, ABH22014-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762014000100006Matéria (Rio de Janeiro) v.19 n.1 2014reponame:Matéria (Rio de Janeiro. Online)instname:Matéria (Rio de Janeiro. Online)instacron:RLAM10.1590/S1517-70762014000100006info:eu-repo/semantics/openAccessSantos,Luciane S.Oliveira,Nilson T. C.Lepienski,Carlos M.Marino,Cláudia E. B.Kuromoto,Neide Keng2015-09-17T00:00:00Zoai:scielo:S1517-70762014000100006Revistahttp://www.materia.coppe.ufrj.br/https://old.scielo.br/oai/scielo-oai.php||materia@labh2.coppe.ufrj.br1517-70761517-7076opendoar:2015-09-17T00:00Matéria (Rio de Janeiro. Online) - Matéria (Rio de Janeiro. Online)false
dc.title.none.fl_str_mv Elastic modulus evaluation of Titania nanotubes obtained by anodic oxidation
title Elastic modulus evaluation of Titania nanotubes obtained by anodic oxidation
spellingShingle Elastic modulus evaluation of Titania nanotubes obtained by anodic oxidation
Santos,Luciane S.
Titania nanotubes
anodic oxidation
indentation
elastic modulus.
title_short Elastic modulus evaluation of Titania nanotubes obtained by anodic oxidation
title_full Elastic modulus evaluation of Titania nanotubes obtained by anodic oxidation
title_fullStr Elastic modulus evaluation of Titania nanotubes obtained by anodic oxidation
title_full_unstemmed Elastic modulus evaluation of Titania nanotubes obtained by anodic oxidation
title_sort Elastic modulus evaluation of Titania nanotubes obtained by anodic oxidation
author Santos,Luciane S.
author_facet Santos,Luciane S.
Oliveira,Nilson T. C.
Lepienski,Carlos M.
Marino,Cláudia E. B.
Kuromoto,Neide K
author_role author
author2 Oliveira,Nilson T. C.
Lepienski,Carlos M.
Marino,Cláudia E. B.
Kuromoto,Neide K
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Santos,Luciane S.
Oliveira,Nilson T. C.
Lepienski,Carlos M.
Marino,Cláudia E. B.
Kuromoto,Neide K
dc.subject.por.fl_str_mv Titania nanotubes
anodic oxidation
indentation
elastic modulus.
topic Titania nanotubes
anodic oxidation
indentation
elastic modulus.
description The use of titania (TiO2) nanotubes is becoming one of the most attractive techniques as surface treatment for implants due its combination of morphology (that accelerates osteoblast adhesion and proliferation), bioactivity and possibility of being use as a drug vehicle. Anodic oxidation is one of the cheapest and simplest approaches to obtain highly ordered nanotubes. Parameters such as applied potential, reaction time and fluoride containing in the electrolyte define the nanotubes morphology. However, the mechanical properties of the nanotubes layer do not have been completely elucidated and they play a crucial role in the implant long term stability. The objective of this research was to obtain TiO2nanotubes using anodic oxidation and to determine their elastic modulus and hardness. The TiO2nanotubes layer was obtained in a fluoride containing electrolyte for 1 hour, one group at 15 V and another one at 25 V. The TiO2nanotubes morphology was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The elastic modulus and hardness were evaluated by nanoindentation experiments using a spherical tip. SEM images showed highly ordered nanotubes on all titanium surfaces and it was observed that the nanotubes diameters are directly related with the applied potential. Nanotubes diameters are 66 ± 9 nm and 131 ± 22 nm for nanotubes obtained at 15 V and 25 V, respectively. Nanoindentation test results showed a decrease in the elastic modulus comparing with titanium reference and these values approach to cortical bone elastic modulus. These results demonstrate that it was possible to obtain a homogeneous TiO2nanotubes layer that has mechanical properties adequate to improve implant long-term stability.
publishDate 2014
dc.date.none.fl_str_mv 2014-03-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762014000100006
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762014000100006
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1517-70762014000100006
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiro
em cooperação com a Associação Brasileira do Hidrogênio, ABH2
publisher.none.fl_str_mv Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiro
em cooperação com a Associação Brasileira do Hidrogênio, ABH2
dc.source.none.fl_str_mv Matéria (Rio de Janeiro) v.19 n.1 2014
reponame:Matéria (Rio de Janeiro. Online)
instname:Matéria (Rio de Janeiro. Online)
instacron:RLAM
instname_str Matéria (Rio de Janeiro. Online)
instacron_str RLAM
institution RLAM
reponame_str Matéria (Rio de Janeiro. Online)
collection Matéria (Rio de Janeiro. Online)
repository.name.fl_str_mv Matéria (Rio de Janeiro. Online) - Matéria (Rio de Janeiro. Online)
repository.mail.fl_str_mv ||materia@labh2.coppe.ufrj.br
_version_ 1752126688391593984