Influence of Type 1 Diabetes on the Symbolic Analysis and Complexity of Heart Rate Variability in Young Adults

Detalhes bibliográficos
Autor(a) principal: Oliveira,Elaine Aparecida de
Data de Publicação: 2018
Outros Autores: Silva,Anne Kastelianne França da, Christofaro,Diego Giuliano Destro, Vanzella,Laís Manata, Gomes,Rayana Loch, Vanderlei,Franciele Marques, Vanderlei,Luiz Carlos Marques
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Arquivos Brasileiros de Cardiologia (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0066-782X2018001300094
Resumo: Abstract Background: Type 1 diabetes mellitus can cause autonomic changes, which can be assessed by heart rate variability. Among the heart rate variability assessment methods, the symbolic analysis and Shannon entropy, based on the Chaotic dynamics, have gained prominence. Objective: To compare heart rate variability indexes, obtained through symbolic analysis and Shannon entropy, in young adults with type 1 diabetes mellitus and healthy young individuals, associated with the analysis of linear indexes; and to verify if there are associations between the indexes obtained by the symbolic analysis and by Shannon entropy and linear indexes in diabetic individuals. Methods: Heart rate variability data from 39 young adults with type 1 diabetes mellitus and 43 healthy young individuals were analyzed, using a cardio-frequency meter. Linear indexes (standard deviation of all normal RR intervals recorded in a time interval expressed in milliseconds; square root of the mean of the squared differences between adjacent normal RR intervals in a time interval expressed in milliseconds; low and high frequency components in millisecond squared; and normalized units and ratio between low and high frequency components) and nonlinear ones (Shannon entropy and symbolic analysis - standard without variation; with one or two variations; and with two different variations) of the heart rate variability were calculated. The statistical significance was set at 5%, and the confidence interval was 95%. Results: Significantly lower values were observed in the DM1 group compared to healthy young adults for the standard deviation indexes of all normal RR intervals recorded in a time interval [37.30 (29.90) vs. 64.50 (36.20); p = 0.0001], square root of the mean of the squared differences between adjacent normal RR intervals in a time interval [32.73 (17.43) vs. 55.59 (21.60); p = 0.0001], low frequency component [402.00 (531.00) vs. 1,203.00 (1,148.00); p = 0.0001], high frequency component [386.00 (583.00) vs. 963.00 (866.00); p = 0.0001] and the pattern with two different variations [15,33 (9,22) vs. 20.24 (12.73); p = 0.0114], with the effect of this difference being considered large (standard deviation of all normal RR intervals recorded in a time interval, square root of the mean of the squared differences between adjacent normal RR intervals in a time interval and low frequency component), medium (high frequency component) and small (standard with two different variations). The agreement of the associations between the linear and non-linear indexes was considered elevated for the high frequency component index - normalized units (r = -0.776), with the standard index without variation, and moderate for the indexes square root of the mean of the squared differences between adjacent normal RR intervals in a time interval (r = 0.550), standard deviation of all normal RR intervals recorded in a time interval (r = 0.522), high frequency component - normalized units (r = 0.638) with the index standard with two similar variations, as well as for the indexes square root of the mean of the squared differences between adjacent normal RR intervals in a time interval (r = 0.627) and high frequency component - normalized units (r = 0.601) with the index standard with two different variations. Conclusion: Type 1 diabetes mellitus influenced linear indexes and symbolic analysis, but not yet in the complexity of heart rate variability. Additionally, heart rate variability indexes correlated with the symbolic dynamics.
id SBC-1_22c6a8e8159e1bce457e71a4aad6f866
oai_identifier_str oai:scielo:S0066-782X2018001300094
network_acronym_str SBC-1
network_name_str Arquivos Brasileiros de Cardiologia (Online)
repository_id_str
spelling Influence of Type 1 Diabetes on the Symbolic Analysis and Complexity of Heart Rate Variability in Young AdultsDiabetes Mellitus / complicationsDiabetes / diagnosisDiabetes / therapyYoung AdultHeart RateAutonomic Nervous SystemAbstract Background: Type 1 diabetes mellitus can cause autonomic changes, which can be assessed by heart rate variability. Among the heart rate variability assessment methods, the symbolic analysis and Shannon entropy, based on the Chaotic dynamics, have gained prominence. Objective: To compare heart rate variability indexes, obtained through symbolic analysis and Shannon entropy, in young adults with type 1 diabetes mellitus and healthy young individuals, associated with the analysis of linear indexes; and to verify if there are associations between the indexes obtained by the symbolic analysis and by Shannon entropy and linear indexes in diabetic individuals. Methods: Heart rate variability data from 39 young adults with type 1 diabetes mellitus and 43 healthy young individuals were analyzed, using a cardio-frequency meter. Linear indexes (standard deviation of all normal RR intervals recorded in a time interval expressed in milliseconds; square root of the mean of the squared differences between adjacent normal RR intervals in a time interval expressed in milliseconds; low and high frequency components in millisecond squared; and normalized units and ratio between low and high frequency components) and nonlinear ones (Shannon entropy and symbolic analysis - standard without variation; with one or two variations; and with two different variations) of the heart rate variability were calculated. The statistical significance was set at 5%, and the confidence interval was 95%. Results: Significantly lower values were observed in the DM1 group compared to healthy young adults for the standard deviation indexes of all normal RR intervals recorded in a time interval [37.30 (29.90) vs. 64.50 (36.20); p = 0.0001], square root of the mean of the squared differences between adjacent normal RR intervals in a time interval [32.73 (17.43) vs. 55.59 (21.60); p = 0.0001], low frequency component [402.00 (531.00) vs. 1,203.00 (1,148.00); p = 0.0001], high frequency component [386.00 (583.00) vs. 963.00 (866.00); p = 0.0001] and the pattern with two different variations [15,33 (9,22) vs. 20.24 (12.73); p = 0.0114], with the effect of this difference being considered large (standard deviation of all normal RR intervals recorded in a time interval, square root of the mean of the squared differences between adjacent normal RR intervals in a time interval and low frequency component), medium (high frequency component) and small (standard with two different variations). The agreement of the associations between the linear and non-linear indexes was considered elevated for the high frequency component index - normalized units (r = -0.776), with the standard index without variation, and moderate for the indexes square root of the mean of the squared differences between adjacent normal RR intervals in a time interval (r = 0.550), standard deviation of all normal RR intervals recorded in a time interval (r = 0.522), high frequency component - normalized units (r = 0.638) with the index standard with two similar variations, as well as for the indexes square root of the mean of the squared differences between adjacent normal RR intervals in a time interval (r = 0.627) and high frequency component - normalized units (r = 0.601) with the index standard with two different variations. Conclusion: Type 1 diabetes mellitus influenced linear indexes and symbolic analysis, but not yet in the complexity of heart rate variability. Additionally, heart rate variability indexes correlated with the symbolic dynamics.Sociedade Brasileira de Cardiologia - SBC2018-07-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0066-782X2018001300094Arquivos Brasileiros de Cardiologia v.111 n.1 2018reponame:Arquivos Brasileiros de Cardiologia (Online)instname:Sociedade Brasileira de Cardiologia (SBC)instacron:SBC10.5935/abc.20180117info:eu-repo/semantics/openAccessOliveira,Elaine Aparecida deSilva,Anne Kastelianne França daChristofaro,Diego Giuliano DestroVanzella,Laís ManataGomes,Rayana LochVanderlei,Franciele MarquesVanderlei,Luiz Carlos Marqueseng2018-08-15T00:00:00Zoai:scielo:S0066-782X2018001300094Revistahttp://www.arquivosonline.com.br/https://old.scielo.br/oai/scielo-oai.php||arquivos@cardiol.br1678-41700066-782Xopendoar:2018-08-15T00:00Arquivos Brasileiros de Cardiologia (Online) - Sociedade Brasileira de Cardiologia (SBC)false
dc.title.none.fl_str_mv Influence of Type 1 Diabetes on the Symbolic Analysis and Complexity of Heart Rate Variability in Young Adults
title Influence of Type 1 Diabetes on the Symbolic Analysis and Complexity of Heart Rate Variability in Young Adults
spellingShingle Influence of Type 1 Diabetes on the Symbolic Analysis and Complexity of Heart Rate Variability in Young Adults
Oliveira,Elaine Aparecida de
Diabetes Mellitus / complications
Diabetes / diagnosis
Diabetes / therapy
Young Adult
Heart Rate
Autonomic Nervous System
title_short Influence of Type 1 Diabetes on the Symbolic Analysis and Complexity of Heart Rate Variability in Young Adults
title_full Influence of Type 1 Diabetes on the Symbolic Analysis and Complexity of Heart Rate Variability in Young Adults
title_fullStr Influence of Type 1 Diabetes on the Symbolic Analysis and Complexity of Heart Rate Variability in Young Adults
title_full_unstemmed Influence of Type 1 Diabetes on the Symbolic Analysis and Complexity of Heart Rate Variability in Young Adults
title_sort Influence of Type 1 Diabetes on the Symbolic Analysis and Complexity of Heart Rate Variability in Young Adults
author Oliveira,Elaine Aparecida de
author_facet Oliveira,Elaine Aparecida de
Silva,Anne Kastelianne França da
Christofaro,Diego Giuliano Destro
Vanzella,Laís Manata
Gomes,Rayana Loch
Vanderlei,Franciele Marques
Vanderlei,Luiz Carlos Marques
author_role author
author2 Silva,Anne Kastelianne França da
Christofaro,Diego Giuliano Destro
Vanzella,Laís Manata
Gomes,Rayana Loch
Vanderlei,Franciele Marques
Vanderlei,Luiz Carlos Marques
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Oliveira,Elaine Aparecida de
Silva,Anne Kastelianne França da
Christofaro,Diego Giuliano Destro
Vanzella,Laís Manata
Gomes,Rayana Loch
Vanderlei,Franciele Marques
Vanderlei,Luiz Carlos Marques
dc.subject.por.fl_str_mv Diabetes Mellitus / complications
Diabetes / diagnosis
Diabetes / therapy
Young Adult
Heart Rate
Autonomic Nervous System
topic Diabetes Mellitus / complications
Diabetes / diagnosis
Diabetes / therapy
Young Adult
Heart Rate
Autonomic Nervous System
description Abstract Background: Type 1 diabetes mellitus can cause autonomic changes, which can be assessed by heart rate variability. Among the heart rate variability assessment methods, the symbolic analysis and Shannon entropy, based on the Chaotic dynamics, have gained prominence. Objective: To compare heart rate variability indexes, obtained through symbolic analysis and Shannon entropy, in young adults with type 1 diabetes mellitus and healthy young individuals, associated with the analysis of linear indexes; and to verify if there are associations between the indexes obtained by the symbolic analysis and by Shannon entropy and linear indexes in diabetic individuals. Methods: Heart rate variability data from 39 young adults with type 1 diabetes mellitus and 43 healthy young individuals were analyzed, using a cardio-frequency meter. Linear indexes (standard deviation of all normal RR intervals recorded in a time interval expressed in milliseconds; square root of the mean of the squared differences between adjacent normal RR intervals in a time interval expressed in milliseconds; low and high frequency components in millisecond squared; and normalized units and ratio between low and high frequency components) and nonlinear ones (Shannon entropy and symbolic analysis - standard without variation; with one or two variations; and with two different variations) of the heart rate variability were calculated. The statistical significance was set at 5%, and the confidence interval was 95%. Results: Significantly lower values were observed in the DM1 group compared to healthy young adults for the standard deviation indexes of all normal RR intervals recorded in a time interval [37.30 (29.90) vs. 64.50 (36.20); p = 0.0001], square root of the mean of the squared differences between adjacent normal RR intervals in a time interval [32.73 (17.43) vs. 55.59 (21.60); p = 0.0001], low frequency component [402.00 (531.00) vs. 1,203.00 (1,148.00); p = 0.0001], high frequency component [386.00 (583.00) vs. 963.00 (866.00); p = 0.0001] and the pattern with two different variations [15,33 (9,22) vs. 20.24 (12.73); p = 0.0114], with the effect of this difference being considered large (standard deviation of all normal RR intervals recorded in a time interval, square root of the mean of the squared differences between adjacent normal RR intervals in a time interval and low frequency component), medium (high frequency component) and small (standard with two different variations). The agreement of the associations between the linear and non-linear indexes was considered elevated for the high frequency component index - normalized units (r = -0.776), with the standard index without variation, and moderate for the indexes square root of the mean of the squared differences between adjacent normal RR intervals in a time interval (r = 0.550), standard deviation of all normal RR intervals recorded in a time interval (r = 0.522), high frequency component - normalized units (r = 0.638) with the index standard with two similar variations, as well as for the indexes square root of the mean of the squared differences between adjacent normal RR intervals in a time interval (r = 0.627) and high frequency component - normalized units (r = 0.601) with the index standard with two different variations. Conclusion: Type 1 diabetes mellitus influenced linear indexes and symbolic analysis, but not yet in the complexity of heart rate variability. Additionally, heart rate variability indexes correlated with the symbolic dynamics.
publishDate 2018
dc.date.none.fl_str_mv 2018-07-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0066-782X2018001300094
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0066-782X2018001300094
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.5935/abc.20180117
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Cardiologia - SBC
publisher.none.fl_str_mv Sociedade Brasileira de Cardiologia - SBC
dc.source.none.fl_str_mv Arquivos Brasileiros de Cardiologia v.111 n.1 2018
reponame:Arquivos Brasileiros de Cardiologia (Online)
instname:Sociedade Brasileira de Cardiologia (SBC)
instacron:SBC
instname_str Sociedade Brasileira de Cardiologia (SBC)
instacron_str SBC
institution SBC
reponame_str Arquivos Brasileiros de Cardiologia (Online)
collection Arquivos Brasileiros de Cardiologia (Online)
repository.name.fl_str_mv Arquivos Brasileiros de Cardiologia (Online) - Sociedade Brasileira de Cardiologia (SBC)
repository.mail.fl_str_mv ||arquivos@cardiol.br
_version_ 1752126568718663680