Ischemic Postconditioning Attenuates Myocardial Ischemia-Reperfusion-Induced Acute Lung Injury by Regulating Endoplasmic Reticulum Stress-Mediated Apoptosis

Detalhes bibliográficos
Autor(a) principal: Li,Aimei
Data de Publicação: 2022
Outros Autores: Chen,Siyu, Wu,Jianjiang, Li,Jiaxin, Wang,Jiang
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Cardiovascular Surgery (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-76382022005004201
Resumo: ABSTRACT Objective: To explore the effect of ischemic postconditioning on myocardial ischemia-reperfusion-induced acute lung injury (ALI). Methods: Forty adult male C57BL/6 mice were randomly divided into sham operation group (SO group), myocardial ischemia-reperfusion group (IR group), ischemic preconditioning group (IPRE group) and ischemic postconditioning group (IPOST group) (10 mice in each group). Anterior descending coronary artery was blocked for 60 min and then reperfused for 15 min to induce myocardial IR. For the IPRE group, 3 consecutive cycles of 5 min of occlusion and 5 minutes of reperfusion of the coronary arteries were performed before ischemia. For the IPOST group, 3 consecutive cycles of 5 min reperfusion and 5 minutes of occlusion of the coronary arteries were performed before reperfusion. Pathological changes of lung tissue, lung wet-to-dry (W/D) weight ratio, inflammatory factors, oxidative stress indicators, apoptosis of lung cells and endoplasmic reticulum stress (ERS) protein were used to evaluate lung injury. Results: After myocardial IR, lung injury worsened significantly, manifested by alveolar congestion, hemorrhage, structural destruction of alveolar septal thickening, and interstitial neutrophil infiltration. In addition, lung W/D ratio was increased, plasma inflammatory factors, including interleukin (IL)-6, tumor necrosis factor (TNF)-α, and IL-17A, were increased, malondialdehyde (MDA) activity of lung tissue was increased, and superoxide dismutase (SOD) activity was decreased after myocardial IR. It was accompanied by the increased protein expression levels of ERS-related protein glucose regulatory protein 78 (GRP78), CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP), and caspase-12, and the increased apoptotic indices of lung tissues. Conclusion: IPOST can effectively improve myocardial IR-induced ALI by inhibiting ERS-induced apoptosis of alveolar epithelial cells.
id SBCCV-1_62084eab59b4cb8d18d44210cdda9f90
oai_identifier_str oai:scielo:S0102-76382022005004201
network_acronym_str SBCCV-1
network_name_str Brazilian Journal of Cardiovascular Surgery (Online)
repository_id_str
spelling Ischemic Postconditioning Attenuates Myocardial Ischemia-Reperfusion-Induced Acute Lung Injury by Regulating Endoplasmic Reticulum Stress-Mediated ApoptosisAlveolar Epithelial CellsIschemia-ReperfusionAcute Lung InjuryCoronary VesselsApoptosisCarrier ProteinsIschemic PostconditioningABSTRACT Objective: To explore the effect of ischemic postconditioning on myocardial ischemia-reperfusion-induced acute lung injury (ALI). Methods: Forty adult male C57BL/6 mice were randomly divided into sham operation group (SO group), myocardial ischemia-reperfusion group (IR group), ischemic preconditioning group (IPRE group) and ischemic postconditioning group (IPOST group) (10 mice in each group). Anterior descending coronary artery was blocked for 60 min and then reperfused for 15 min to induce myocardial IR. For the IPRE group, 3 consecutive cycles of 5 min of occlusion and 5 minutes of reperfusion of the coronary arteries were performed before ischemia. For the IPOST group, 3 consecutive cycles of 5 min reperfusion and 5 minutes of occlusion of the coronary arteries were performed before reperfusion. Pathological changes of lung tissue, lung wet-to-dry (W/D) weight ratio, inflammatory factors, oxidative stress indicators, apoptosis of lung cells and endoplasmic reticulum stress (ERS) protein were used to evaluate lung injury. Results: After myocardial IR, lung injury worsened significantly, manifested by alveolar congestion, hemorrhage, structural destruction of alveolar septal thickening, and interstitial neutrophil infiltration. In addition, lung W/D ratio was increased, plasma inflammatory factors, including interleukin (IL)-6, tumor necrosis factor (TNF)-α, and IL-17A, were increased, malondialdehyde (MDA) activity of lung tissue was increased, and superoxide dismutase (SOD) activity was decreased after myocardial IR. It was accompanied by the increased protein expression levels of ERS-related protein glucose regulatory protein 78 (GRP78), CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP), and caspase-12, and the increased apoptotic indices of lung tissues. Conclusion: IPOST can effectively improve myocardial IR-induced ALI by inhibiting ERS-induced apoptosis of alveolar epithelial cells.Sociedade Brasileira de Cirurgia Cardiovascular2022-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-76382022005004201Brazilian Journal of Cardiovascular Surgery n.ahead 2022reponame:Brazilian Journal of Cardiovascular Surgery (Online)instname:Sociedade Brasileira de Cirurgia Cardiovascular (SBCCV)instacron:SBCCV10.21470/1678-9741-2021-0043info:eu-repo/semantics/openAccessLi,AimeiChen,SiyuWu,JianjiangLi,JiaxinWang,Jiangeng2022-06-10T00:00:00Zoai:scielo:S0102-76382022005004201Revistahttp://www.rbccv.org.br/https://old.scielo.br/oai/scielo-oai.php||rosangela.monteiro@incor.usp.br|| domingo@braile.com.br|| brandau@braile.com.br1678-97410102-7638opendoar:2022-06-10T00:00Brazilian Journal of Cardiovascular Surgery (Online) - Sociedade Brasileira de Cirurgia Cardiovascular (SBCCV)false
dc.title.none.fl_str_mv Ischemic Postconditioning Attenuates Myocardial Ischemia-Reperfusion-Induced Acute Lung Injury by Regulating Endoplasmic Reticulum Stress-Mediated Apoptosis
title Ischemic Postconditioning Attenuates Myocardial Ischemia-Reperfusion-Induced Acute Lung Injury by Regulating Endoplasmic Reticulum Stress-Mediated Apoptosis
spellingShingle Ischemic Postconditioning Attenuates Myocardial Ischemia-Reperfusion-Induced Acute Lung Injury by Regulating Endoplasmic Reticulum Stress-Mediated Apoptosis
Li,Aimei
Alveolar Epithelial Cells
Ischemia-Reperfusion
Acute Lung Injury
Coronary Vessels
Apoptosis
Carrier Proteins
Ischemic Postconditioning
title_short Ischemic Postconditioning Attenuates Myocardial Ischemia-Reperfusion-Induced Acute Lung Injury by Regulating Endoplasmic Reticulum Stress-Mediated Apoptosis
title_full Ischemic Postconditioning Attenuates Myocardial Ischemia-Reperfusion-Induced Acute Lung Injury by Regulating Endoplasmic Reticulum Stress-Mediated Apoptosis
title_fullStr Ischemic Postconditioning Attenuates Myocardial Ischemia-Reperfusion-Induced Acute Lung Injury by Regulating Endoplasmic Reticulum Stress-Mediated Apoptosis
title_full_unstemmed Ischemic Postconditioning Attenuates Myocardial Ischemia-Reperfusion-Induced Acute Lung Injury by Regulating Endoplasmic Reticulum Stress-Mediated Apoptosis
title_sort Ischemic Postconditioning Attenuates Myocardial Ischemia-Reperfusion-Induced Acute Lung Injury by Regulating Endoplasmic Reticulum Stress-Mediated Apoptosis
author Li,Aimei
author_facet Li,Aimei
Chen,Siyu
Wu,Jianjiang
Li,Jiaxin
Wang,Jiang
author_role author
author2 Chen,Siyu
Wu,Jianjiang
Li,Jiaxin
Wang,Jiang
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Li,Aimei
Chen,Siyu
Wu,Jianjiang
Li,Jiaxin
Wang,Jiang
dc.subject.por.fl_str_mv Alveolar Epithelial Cells
Ischemia-Reperfusion
Acute Lung Injury
Coronary Vessels
Apoptosis
Carrier Proteins
Ischemic Postconditioning
topic Alveolar Epithelial Cells
Ischemia-Reperfusion
Acute Lung Injury
Coronary Vessels
Apoptosis
Carrier Proteins
Ischemic Postconditioning
description ABSTRACT Objective: To explore the effect of ischemic postconditioning on myocardial ischemia-reperfusion-induced acute lung injury (ALI). Methods: Forty adult male C57BL/6 mice were randomly divided into sham operation group (SO group), myocardial ischemia-reperfusion group (IR group), ischemic preconditioning group (IPRE group) and ischemic postconditioning group (IPOST group) (10 mice in each group). Anterior descending coronary artery was blocked for 60 min and then reperfused for 15 min to induce myocardial IR. For the IPRE group, 3 consecutive cycles of 5 min of occlusion and 5 minutes of reperfusion of the coronary arteries were performed before ischemia. For the IPOST group, 3 consecutive cycles of 5 min reperfusion and 5 minutes of occlusion of the coronary arteries were performed before reperfusion. Pathological changes of lung tissue, lung wet-to-dry (W/D) weight ratio, inflammatory factors, oxidative stress indicators, apoptosis of lung cells and endoplasmic reticulum stress (ERS) protein were used to evaluate lung injury. Results: After myocardial IR, lung injury worsened significantly, manifested by alveolar congestion, hemorrhage, structural destruction of alveolar septal thickening, and interstitial neutrophil infiltration. In addition, lung W/D ratio was increased, plasma inflammatory factors, including interleukin (IL)-6, tumor necrosis factor (TNF)-α, and IL-17A, were increased, malondialdehyde (MDA) activity of lung tissue was increased, and superoxide dismutase (SOD) activity was decreased after myocardial IR. It was accompanied by the increased protein expression levels of ERS-related protein glucose regulatory protein 78 (GRP78), CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP), and caspase-12, and the increased apoptotic indices of lung tissues. Conclusion: IPOST can effectively improve myocardial IR-induced ALI by inhibiting ERS-induced apoptosis of alveolar epithelial cells.
publishDate 2022
dc.date.none.fl_str_mv 2022-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-76382022005004201
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-76382022005004201
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.21470/1678-9741-2021-0043
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Cirurgia Cardiovascular
publisher.none.fl_str_mv Sociedade Brasileira de Cirurgia Cardiovascular
dc.source.none.fl_str_mv Brazilian Journal of Cardiovascular Surgery n.ahead 2022
reponame:Brazilian Journal of Cardiovascular Surgery (Online)
instname:Sociedade Brasileira de Cirurgia Cardiovascular (SBCCV)
instacron:SBCCV
instname_str Sociedade Brasileira de Cirurgia Cardiovascular (SBCCV)
instacron_str SBCCV
institution SBCCV
reponame_str Brazilian Journal of Cardiovascular Surgery (Online)
collection Brazilian Journal of Cardiovascular Surgery (Online)
repository.name.fl_str_mv Brazilian Journal of Cardiovascular Surgery (Online) - Sociedade Brasileira de Cirurgia Cardiovascular (SBCCV)
repository.mail.fl_str_mv ||rosangela.monteiro@incor.usp.br|| domingo@braile.com.br|| brandau@braile.com.br
_version_ 1752126603906777088