Integration of Allelopathic Crop Residues and NPK Fertilizer to Mitigate Residue-Phytotoxicity, Improve Soil Fertility and Wheat Growth under Different Moisture Conditions

Detalhes bibliográficos
Autor(a) principal: FAROOQ,N.
Data de Publicação: 2018
Outros Autores: IQBAL,M., ZAHIR,Z.A., FAROOQ,M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Planta daninha (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-83582018000100319
Resumo: ABSTRACT: Phytotoxic effects of allelopathic crop residues are important to trickle for their use as a source of organic amendments to improve soil fertility. In present study, through pots and two year field studies, we examined the integrated effect of allelopathic residues and NPK fertilizer treatments including T0 (control), T1 (200-150-100 kg NPK ha 1), T2 (100-75-50 kg NPK ha-1 + mung bean straw 4 t ha-1), T3 (100-75-50 kg NPK ha-1 + rice straw 4 t ha-1), T4 (mung bean straw 8 t ha-1) and T5 (rice straw 8 t ha-1) under different water regimes on soil fertility and wheat crop. Solo application of mung bean residue and rice straw caused significant inhibition of various germination and growth traits of wheat while minimal inhibition occurred when allelopathic straws were integrated with NPK fertilizer both under laboratory and field conditions, especially under 14 days of alternate wet/dry cycles. Among fertilizer treatments, mung bean residue caused a greater increase in soil organic carbon, available nitrogen and available phosphorus, while there was maximum percent increase in available potassium with T1 (200-150-100 kg NPK ha-1). Maximum increase in grain yield (30% and 33%) was achieved with T2 (100-75-50 kg NPK ha-1 + mung bean straw 4 t ha-1) during 2014-15 and 2015-16, respectively. Integration of allelopathic crop residues with inorganic fertilizers and alternate wet/dry cycles can help to reduce the possible phytotoxic effect of allelopathic residues for sustainable wheat production.
id SBCPD-1_ccf0dcd2e253571d8c4f7f0987ab3343
oai_identifier_str oai:scielo:S0100-83582018000100319
network_acronym_str SBCPD-1
network_name_str Planta daninha (Online)
repository_id_str
spelling Integration of Allelopathic Crop Residues and NPK Fertilizer to Mitigate Residue-Phytotoxicity, Improve Soil Fertility and Wheat Growth under Different Moisture Conditionsintegrated nutrient managementorganic amendmentswet dry cyclessoil propertiesABSTRACT: Phytotoxic effects of allelopathic crop residues are important to trickle for their use as a source of organic amendments to improve soil fertility. In present study, through pots and two year field studies, we examined the integrated effect of allelopathic residues and NPK fertilizer treatments including T0 (control), T1 (200-150-100 kg NPK ha 1), T2 (100-75-50 kg NPK ha-1 + mung bean straw 4 t ha-1), T3 (100-75-50 kg NPK ha-1 + rice straw 4 t ha-1), T4 (mung bean straw 8 t ha-1) and T5 (rice straw 8 t ha-1) under different water regimes on soil fertility and wheat crop. Solo application of mung bean residue and rice straw caused significant inhibition of various germination and growth traits of wheat while minimal inhibition occurred when allelopathic straws were integrated with NPK fertilizer both under laboratory and field conditions, especially under 14 days of alternate wet/dry cycles. Among fertilizer treatments, mung bean residue caused a greater increase in soil organic carbon, available nitrogen and available phosphorus, while there was maximum percent increase in available potassium with T1 (200-150-100 kg NPK ha-1). Maximum increase in grain yield (30% and 33%) was achieved with T2 (100-75-50 kg NPK ha-1 + mung bean straw 4 t ha-1) during 2014-15 and 2015-16, respectively. Integration of allelopathic crop residues with inorganic fertilizers and alternate wet/dry cycles can help to reduce the possible phytotoxic effect of allelopathic residues for sustainable wheat production.Sociedade Brasileira da Ciência das Plantas Daninhas 2018-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-83582018000100319Planta Daninha v.36 2018reponame:Planta daninha (Online)instname:Sociedade Brasileira da Ciência das Plantas Daninhas (SBCPD)instacron:SBCPD10.1590/s0100-83582018360100102info:eu-repo/semantics/openAccessFAROOQ,N.IQBAL,M.ZAHIR,Z.A.FAROOQ,M.eng2018-10-31T00:00:00Zoai:scielo:S0100-83582018000100319Revistahttp://revistas.cpd.ufv.br/pdaninhaweb/https://old.scielo.br/oai/scielo-oai.php||rpdaninha@gmail.com1806-96810100-8358opendoar:2018-10-31T00:00Planta daninha (Online) - Sociedade Brasileira da Ciência das Plantas Daninhas (SBCPD)false
dc.title.none.fl_str_mv Integration of Allelopathic Crop Residues and NPK Fertilizer to Mitigate Residue-Phytotoxicity, Improve Soil Fertility and Wheat Growth under Different Moisture Conditions
title Integration of Allelopathic Crop Residues and NPK Fertilizer to Mitigate Residue-Phytotoxicity, Improve Soil Fertility and Wheat Growth under Different Moisture Conditions
spellingShingle Integration of Allelopathic Crop Residues and NPK Fertilizer to Mitigate Residue-Phytotoxicity, Improve Soil Fertility and Wheat Growth under Different Moisture Conditions
FAROOQ,N.
integrated nutrient management
organic amendments
wet dry cycles
soil properties
title_short Integration of Allelopathic Crop Residues and NPK Fertilizer to Mitigate Residue-Phytotoxicity, Improve Soil Fertility and Wheat Growth under Different Moisture Conditions
title_full Integration of Allelopathic Crop Residues and NPK Fertilizer to Mitigate Residue-Phytotoxicity, Improve Soil Fertility and Wheat Growth under Different Moisture Conditions
title_fullStr Integration of Allelopathic Crop Residues and NPK Fertilizer to Mitigate Residue-Phytotoxicity, Improve Soil Fertility and Wheat Growth under Different Moisture Conditions
title_full_unstemmed Integration of Allelopathic Crop Residues and NPK Fertilizer to Mitigate Residue-Phytotoxicity, Improve Soil Fertility and Wheat Growth under Different Moisture Conditions
title_sort Integration of Allelopathic Crop Residues and NPK Fertilizer to Mitigate Residue-Phytotoxicity, Improve Soil Fertility and Wheat Growth under Different Moisture Conditions
author FAROOQ,N.
author_facet FAROOQ,N.
IQBAL,M.
ZAHIR,Z.A.
FAROOQ,M.
author_role author
author2 IQBAL,M.
ZAHIR,Z.A.
FAROOQ,M.
author2_role author
author
author
dc.contributor.author.fl_str_mv FAROOQ,N.
IQBAL,M.
ZAHIR,Z.A.
FAROOQ,M.
dc.subject.por.fl_str_mv integrated nutrient management
organic amendments
wet dry cycles
soil properties
topic integrated nutrient management
organic amendments
wet dry cycles
soil properties
description ABSTRACT: Phytotoxic effects of allelopathic crop residues are important to trickle for their use as a source of organic amendments to improve soil fertility. In present study, through pots and two year field studies, we examined the integrated effect of allelopathic residues and NPK fertilizer treatments including T0 (control), T1 (200-150-100 kg NPK ha 1), T2 (100-75-50 kg NPK ha-1 + mung bean straw 4 t ha-1), T3 (100-75-50 kg NPK ha-1 + rice straw 4 t ha-1), T4 (mung bean straw 8 t ha-1) and T5 (rice straw 8 t ha-1) under different water regimes on soil fertility and wheat crop. Solo application of mung bean residue and rice straw caused significant inhibition of various germination and growth traits of wheat while minimal inhibition occurred when allelopathic straws were integrated with NPK fertilizer both under laboratory and field conditions, especially under 14 days of alternate wet/dry cycles. Among fertilizer treatments, mung bean residue caused a greater increase in soil organic carbon, available nitrogen and available phosphorus, while there was maximum percent increase in available potassium with T1 (200-150-100 kg NPK ha-1). Maximum increase in grain yield (30% and 33%) was achieved with T2 (100-75-50 kg NPK ha-1 + mung bean straw 4 t ha-1) during 2014-15 and 2015-16, respectively. Integration of allelopathic crop residues with inorganic fertilizers and alternate wet/dry cycles can help to reduce the possible phytotoxic effect of allelopathic residues for sustainable wheat production.
publishDate 2018
dc.date.none.fl_str_mv 2018-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-83582018000100319
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-83582018000100319
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/s0100-83582018360100102
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira da Ciência das Plantas Daninhas
publisher.none.fl_str_mv Sociedade Brasileira da Ciência das Plantas Daninhas
dc.source.none.fl_str_mv Planta Daninha v.36 2018
reponame:Planta daninha (Online)
instname:Sociedade Brasileira da Ciência das Plantas Daninhas (SBCPD)
instacron:SBCPD
instname_str Sociedade Brasileira da Ciência das Plantas Daninhas (SBCPD)
instacron_str SBCPD
institution SBCPD
reponame_str Planta daninha (Online)
collection Planta daninha (Online)
repository.name.fl_str_mv Planta daninha (Online) - Sociedade Brasileira da Ciência das Plantas Daninhas (SBCPD)
repository.mail.fl_str_mv ||rpdaninha@gmail.com
_version_ 1752126496149864448