Microbial rhizosphere communities in response to chlorimuron-ethyl herbicide in soils under alfafa crop

Detalhes bibliográficos
Autor(a) principal: Ding,Junnan
Data de Publicação: 2022
Outros Autores: Li,Xin
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Brasileira de Ciência do Solo (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832022000100410
Resumo: ABSTRACT Biolog Eco technology was used to investigate the effects of different chemical herbicide application methods, such as pre-emergence after sowing and post-emergence (stem and leaf spraying), on the characteristics of carbon source utilization by microbial communities in alfalfa rhizosphere soil. The averages of well color development (AWCD) and microbial metabolism diversity indices of post-emergence herbicide spraying on stems and leaves were significantly lower than those of pre-emergence herbicide and without herbicide treatments. Furthermore, pre-emergence after sowing herbicide treatment did not affect soil microorganisms. The principal component analysis (PCA) revealed that the microbial community diversities of the rhizosphere soils differed significantly between herbicide treatments. Carbohydrate was the carbon source type that was most sensitive to herbicide treatment changes, followed by amino acids and carboxylic acids. The herbicide application method significantly reduced the capacities of the microbial community to utilize the carbon sources, as mainly manifested in the ability to use polymers. As shown by a comprehensive analysis on the growth of alfalfa and the physiological and biochemical indices of its root system, the application of herbicide chlorimuron-ethyl reduced the alfalfa yield, and the two different application methods tested showed no significant difference. Herbicide application and different application methods showed significant impacts on alfalfa root activity and membrane permeability, suggesting that the application of herbicide damaged the membrane permeability and the activity of the alfalfa root system. Impacts of herbicide residues in the soil after stem and leaf post-emergence treatment on alfalfa growth and soil microorganisms should not be ignored.
id SBCS-1_73d6e7e1a2c96d4f86302771c82066a3
oai_identifier_str oai:scielo:S0100-06832022000100410
network_acronym_str SBCS-1
network_name_str Revista Brasileira de Ciência do Solo (Online)
repository_id_str
spelling Microbial rhizosphere communities in response to chlorimuron-ethyl herbicide in soils under alfafa cropherbicidebiologicsoil microbial communityAWCDPCAABSTRACT Biolog Eco technology was used to investigate the effects of different chemical herbicide application methods, such as pre-emergence after sowing and post-emergence (stem and leaf spraying), on the characteristics of carbon source utilization by microbial communities in alfalfa rhizosphere soil. The averages of well color development (AWCD) and microbial metabolism diversity indices of post-emergence herbicide spraying on stems and leaves were significantly lower than those of pre-emergence herbicide and without herbicide treatments. Furthermore, pre-emergence after sowing herbicide treatment did not affect soil microorganisms. The principal component analysis (PCA) revealed that the microbial community diversities of the rhizosphere soils differed significantly between herbicide treatments. Carbohydrate was the carbon source type that was most sensitive to herbicide treatment changes, followed by amino acids and carboxylic acids. The herbicide application method significantly reduced the capacities of the microbial community to utilize the carbon sources, as mainly manifested in the ability to use polymers. As shown by a comprehensive analysis on the growth of alfalfa and the physiological and biochemical indices of its root system, the application of herbicide chlorimuron-ethyl reduced the alfalfa yield, and the two different application methods tested showed no significant difference. Herbicide application and different application methods showed significant impacts on alfalfa root activity and membrane permeability, suggesting that the application of herbicide damaged the membrane permeability and the activity of the alfalfa root system. Impacts of herbicide residues in the soil after stem and leaf post-emergence treatment on alfalfa growth and soil microorganisms should not be ignored.Sociedade Brasileira de Ciência do Solo2022-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832022000100410Revista Brasileira de Ciência do Solo v.46 2022reponame:Revista Brasileira de Ciência do Solo (Online)instname:Sociedade Brasileira de Ciência do Solo (SBCS)instacron:SBCS10.36783/18069657rbcs20210159info:eu-repo/semantics/openAccessDing,JunnanLi,Xineng2022-04-28T00:00:00Zoai:scielo:S0100-06832022000100410Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=0100-0683&lng=es&nrm=isohttps://old.scielo.br/oai/scielo-oai.php||sbcs@ufv.br1806-96570100-0683opendoar:2022-04-28T00:00Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS)false
dc.title.none.fl_str_mv Microbial rhizosphere communities in response to chlorimuron-ethyl herbicide in soils under alfafa crop
title Microbial rhizosphere communities in response to chlorimuron-ethyl herbicide in soils under alfafa crop
spellingShingle Microbial rhizosphere communities in response to chlorimuron-ethyl herbicide in soils under alfafa crop
Ding,Junnan
herbicide
biologic
soil microbial community
AWCD
PCA
title_short Microbial rhizosphere communities in response to chlorimuron-ethyl herbicide in soils under alfafa crop
title_full Microbial rhizosphere communities in response to chlorimuron-ethyl herbicide in soils under alfafa crop
title_fullStr Microbial rhizosphere communities in response to chlorimuron-ethyl herbicide in soils under alfafa crop
title_full_unstemmed Microbial rhizosphere communities in response to chlorimuron-ethyl herbicide in soils under alfafa crop
title_sort Microbial rhizosphere communities in response to chlorimuron-ethyl herbicide in soils under alfafa crop
author Ding,Junnan
author_facet Ding,Junnan
Li,Xin
author_role author
author2 Li,Xin
author2_role author
dc.contributor.author.fl_str_mv Ding,Junnan
Li,Xin
dc.subject.por.fl_str_mv herbicide
biologic
soil microbial community
AWCD
PCA
topic herbicide
biologic
soil microbial community
AWCD
PCA
description ABSTRACT Biolog Eco technology was used to investigate the effects of different chemical herbicide application methods, such as pre-emergence after sowing and post-emergence (stem and leaf spraying), on the characteristics of carbon source utilization by microbial communities in alfalfa rhizosphere soil. The averages of well color development (AWCD) and microbial metabolism diversity indices of post-emergence herbicide spraying on stems and leaves were significantly lower than those of pre-emergence herbicide and without herbicide treatments. Furthermore, pre-emergence after sowing herbicide treatment did not affect soil microorganisms. The principal component analysis (PCA) revealed that the microbial community diversities of the rhizosphere soils differed significantly between herbicide treatments. Carbohydrate was the carbon source type that was most sensitive to herbicide treatment changes, followed by amino acids and carboxylic acids. The herbicide application method significantly reduced the capacities of the microbial community to utilize the carbon sources, as mainly manifested in the ability to use polymers. As shown by a comprehensive analysis on the growth of alfalfa and the physiological and biochemical indices of its root system, the application of herbicide chlorimuron-ethyl reduced the alfalfa yield, and the two different application methods tested showed no significant difference. Herbicide application and different application methods showed significant impacts on alfalfa root activity and membrane permeability, suggesting that the application of herbicide damaged the membrane permeability and the activity of the alfalfa root system. Impacts of herbicide residues in the soil after stem and leaf post-emergence treatment on alfalfa growth and soil microorganisms should not be ignored.
publishDate 2022
dc.date.none.fl_str_mv 2022-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832022000100410
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832022000100410
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.36783/18069657rbcs20210159
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Ciência do Solo
publisher.none.fl_str_mv Sociedade Brasileira de Ciência do Solo
dc.source.none.fl_str_mv Revista Brasileira de Ciência do Solo v.46 2022
reponame:Revista Brasileira de Ciência do Solo (Online)
instname:Sociedade Brasileira de Ciência do Solo (SBCS)
instacron:SBCS
instname_str Sociedade Brasileira de Ciência do Solo (SBCS)
instacron_str SBCS
institution SBCS
reponame_str Revista Brasileira de Ciência do Solo (Online)
collection Revista Brasileira de Ciência do Solo (Online)
repository.name.fl_str_mv Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS)
repository.mail.fl_str_mv ||sbcs@ufv.br
_version_ 1752126522832977920