New methods for estimating lime requirement to attain desirable pH values in Brazilian soils

Detalhes bibliográficos
Autor(a) principal: Teixeira,Welldy Gonçalves
Data de Publicação: 2020
Outros Autores: Víctor Hugo Alvarez,V., Neves,Júlio César Lima
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Brasileira de Ciência do Solo (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832020000100512
Resumo: ABSTRACT In Brazil, empirical models are traditionally used to determine lime requirement (LR), but their reliability is doubtful in most cases, since they can lead to under- or overestimation of LR for different soil types. In this study, the most critical characteristics influencing LR were selected to develop reliable models for predicting LR that raise soil pH to optimum values for crop production in Brazil. Soil samples (n = 22) with varying proportions of clay (5-88 %) and organic matter (OM) levels (3.78-79.35 g kg-1) were used to develop the models. Organic matter and potential acidity (HAl) combined with ΔpH [target pH(H2O) - initial pH(H2O)] were the best predictor variables for estimating LR. Four models were developed (OMpH5.8, OMpH6.0, HAlpH5.8, and HAlpH6.0) for estimating LR to attain target pH values of 5.8 or 6.0 with reasonably high prediction performance (0.758≤ R2 ≤0.886). An algorithm was further developed for selecting the LR to be recommended among those estimated by the models. The proposed algorithm enables to select the minimum LR that ensure the adequate supply of Ca and Mg to plants and does not exceed the levels of soil HAl, thus preventing excessive pH increase. The new predictive models were less sensitive to predict LR high enough to meet Ca2+ and Mg2+ requirements of plants in soils containing levels of HAl lower than 5 cmolc dm-3 and OM lower than 40 g kg-1. However, they ensured an adequate supply of Ca2+ and Mg2+ to plants and avoided the overestimation of LR for most soils used in this research. Validation via an independent dataset (n = 100 samples) confirmed the good predictive performance of the models across a wide range of soil types. In summary, the proposed models can be used as good alternatives to traditional methods for predicting LR for a great variety of Brazilian soils. Further, they are versatile and may be easily deployed in soil testing laboratories, since soil pH, OM, and HAl are characteristics determined in routine analysis.
id SBCS-1_74e30ff577fc0f136deae55ca9e2b038
oai_identifier_str oai:scielo:S0100-06832020000100512
network_acronym_str SBCS-1
network_name_str Revista Brasileira de Ciência do Solo (Online)
repository_id_str
spelling New methods for estimating lime requirement to attain desirable pH values in Brazilian soilslime requirement predictionorganic matterpotential acidityalgorithmABSTRACT In Brazil, empirical models are traditionally used to determine lime requirement (LR), but their reliability is doubtful in most cases, since they can lead to under- or overestimation of LR for different soil types. In this study, the most critical characteristics influencing LR were selected to develop reliable models for predicting LR that raise soil pH to optimum values for crop production in Brazil. Soil samples (n = 22) with varying proportions of clay (5-88 %) and organic matter (OM) levels (3.78-79.35 g kg-1) were used to develop the models. Organic matter and potential acidity (HAl) combined with ΔpH [target pH(H2O) - initial pH(H2O)] were the best predictor variables for estimating LR. Four models were developed (OMpH5.8, OMpH6.0, HAlpH5.8, and HAlpH6.0) for estimating LR to attain target pH values of 5.8 or 6.0 with reasonably high prediction performance (0.758≤ R2 ≤0.886). An algorithm was further developed for selecting the LR to be recommended among those estimated by the models. The proposed algorithm enables to select the minimum LR that ensure the adequate supply of Ca and Mg to plants and does not exceed the levels of soil HAl, thus preventing excessive pH increase. The new predictive models were less sensitive to predict LR high enough to meet Ca2+ and Mg2+ requirements of plants in soils containing levels of HAl lower than 5 cmolc dm-3 and OM lower than 40 g kg-1. However, they ensured an adequate supply of Ca2+ and Mg2+ to plants and avoided the overestimation of LR for most soils used in this research. Validation via an independent dataset (n = 100 samples) confirmed the good predictive performance of the models across a wide range of soil types. In summary, the proposed models can be used as good alternatives to traditional methods for predicting LR for a great variety of Brazilian soils. Further, they are versatile and may be easily deployed in soil testing laboratories, since soil pH, OM, and HAl are characteristics determined in routine analysis.Sociedade Brasileira de Ciência do Solo2020-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832020000100512Revista Brasileira de Ciência do Solo v.44 2020reponame:Revista Brasileira de Ciência do Solo (Online)instname:Sociedade Brasileira de Ciência do Solo (SBCS)instacron:SBCS10.36783/18069657rbcs20200008info:eu-repo/semantics/openAccessTeixeira,Welldy GonçalvesVíctor Hugo Alvarez,V.Neves,Júlio César Limaeng2020-07-07T00:00:00Zoai:scielo:S0100-06832020000100512Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=0100-0683&lng=es&nrm=isohttps://old.scielo.br/oai/scielo-oai.php||sbcs@ufv.br1806-96570100-0683opendoar:2020-07-07T00:00Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS)false
dc.title.none.fl_str_mv New methods for estimating lime requirement to attain desirable pH values in Brazilian soils
title New methods for estimating lime requirement to attain desirable pH values in Brazilian soils
spellingShingle New methods for estimating lime requirement to attain desirable pH values in Brazilian soils
Teixeira,Welldy Gonçalves
lime requirement prediction
organic matter
potential acidity
algorithm
title_short New methods for estimating lime requirement to attain desirable pH values in Brazilian soils
title_full New methods for estimating lime requirement to attain desirable pH values in Brazilian soils
title_fullStr New methods for estimating lime requirement to attain desirable pH values in Brazilian soils
title_full_unstemmed New methods for estimating lime requirement to attain desirable pH values in Brazilian soils
title_sort New methods for estimating lime requirement to attain desirable pH values in Brazilian soils
author Teixeira,Welldy Gonçalves
author_facet Teixeira,Welldy Gonçalves
Víctor Hugo Alvarez,V.
Neves,Júlio César Lima
author_role author
author2 Víctor Hugo Alvarez,V.
Neves,Júlio César Lima
author2_role author
author
dc.contributor.author.fl_str_mv Teixeira,Welldy Gonçalves
Víctor Hugo Alvarez,V.
Neves,Júlio César Lima
dc.subject.por.fl_str_mv lime requirement prediction
organic matter
potential acidity
algorithm
topic lime requirement prediction
organic matter
potential acidity
algorithm
description ABSTRACT In Brazil, empirical models are traditionally used to determine lime requirement (LR), but their reliability is doubtful in most cases, since they can lead to under- or overestimation of LR for different soil types. In this study, the most critical characteristics influencing LR were selected to develop reliable models for predicting LR that raise soil pH to optimum values for crop production in Brazil. Soil samples (n = 22) with varying proportions of clay (5-88 %) and organic matter (OM) levels (3.78-79.35 g kg-1) were used to develop the models. Organic matter and potential acidity (HAl) combined with ΔpH [target pH(H2O) - initial pH(H2O)] were the best predictor variables for estimating LR. Four models were developed (OMpH5.8, OMpH6.0, HAlpH5.8, and HAlpH6.0) for estimating LR to attain target pH values of 5.8 or 6.0 with reasonably high prediction performance (0.758≤ R2 ≤0.886). An algorithm was further developed for selecting the LR to be recommended among those estimated by the models. The proposed algorithm enables to select the minimum LR that ensure the adequate supply of Ca and Mg to plants and does not exceed the levels of soil HAl, thus preventing excessive pH increase. The new predictive models were less sensitive to predict LR high enough to meet Ca2+ and Mg2+ requirements of plants in soils containing levels of HAl lower than 5 cmolc dm-3 and OM lower than 40 g kg-1. However, they ensured an adequate supply of Ca2+ and Mg2+ to plants and avoided the overestimation of LR for most soils used in this research. Validation via an independent dataset (n = 100 samples) confirmed the good predictive performance of the models across a wide range of soil types. In summary, the proposed models can be used as good alternatives to traditional methods for predicting LR for a great variety of Brazilian soils. Further, they are versatile and may be easily deployed in soil testing laboratories, since soil pH, OM, and HAl are characteristics determined in routine analysis.
publishDate 2020
dc.date.none.fl_str_mv 2020-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832020000100512
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832020000100512
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.36783/18069657rbcs20200008
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Ciência do Solo
publisher.none.fl_str_mv Sociedade Brasileira de Ciência do Solo
dc.source.none.fl_str_mv Revista Brasileira de Ciência do Solo v.44 2020
reponame:Revista Brasileira de Ciência do Solo (Online)
instname:Sociedade Brasileira de Ciência do Solo (SBCS)
instacron:SBCS
instname_str Sociedade Brasileira de Ciência do Solo (SBCS)
instacron_str SBCS
institution SBCS
reponame_str Revista Brasileira de Ciência do Solo (Online)
collection Revista Brasileira de Ciência do Solo (Online)
repository.name.fl_str_mv Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS)
repository.mail.fl_str_mv ||sbcs@ufv.br
_version_ 1752126522633748480