Best tillage practices for eucalyptus growth and productivity: A review on the Brazilian experience

Detalhes bibliográficos
Autor(a) principal: Santos,Kristiana Fiorentin dos
Data de Publicação: 2022
Outros Autores: Reichert,José Miguel
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Brasileira de Ciência do Solo (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832022000100403
Resumo: ABSTRACT Commercial eucalyptus forestry has significantly increased in the last decades to supply the growing demand for forest goods (pulp, paper, sawmill, by-product industries, and biomass for bioenergy and biofuels). Among factors most influencing forest productivity, the soil physical environment is very important and can be harmful or beneficial to trees. In the effort to increase environmental and economic sustainability of commercial plantations, in this literature review, we summarize relationships between soil type and properties, forest rotation, and forest growth and productivity. Mechanized soil tillage must consider soil type, particularly land slope, soil drainage and depth, along with forest rotation (first or higher-order). Soil surveys, including soil physical properties (e.g., compaction, granulometry including gravel) and morphological attributes (e.g., horizons, solum depth, subsurface drainage impedance), are thus essential for foresters to make knowledgeable decisions on soil tillage, provided tillage is the single most costly practice in eucalyptus forestry. Subsoiling is the most common soil tillage for eucalyptus, but it is best for deep, drained soils. Existing scientific publications show, for clayey cohesive or compacted soils, tillage depth might be of 0.70 m (deep subsoiling) to ameliorate compacted soil of low microporosity and restriction to root growth, but 0.50 m (shallow) subsoiling plus ridding produce similar results. The latter, nonetheless, has a higher operational cost. Downslope subsoiling on sloppy lands increases the risk for soil erosion, which may be reduced by interrupting ripping, mechanized hole- or pit-drilling with low operational cost. Chiseling performed for fertilizer application (minimum 0.25 m deep) might be the only tillage required for non-compacted sandy soils. Mechanical or manual pitting could also be an option for second or higher rotations, but results show crop early-growth is restricted, possibly because of root confinement. For second or higher rotations, stumps require cutting to allow cross-slope tractor traffic and tillage. Subsoiling plus ridging or bedding is required in low-drainage or shallow soils to increase the soil volume to be explored by roots. The ridges can be built by grade bedding or terracing plows. In areas with waterlogging, drainage and ridging without subsoiling are necessary. Research opportunities include further studies for slopy lands and low-drainage or compacted soils, tillage affecting soil erosion and eucalyptus productivity, equipment for special tillage, and mapping compaction risk and special tillage needs.
id SBCS-1_874fddd094f22fe020f645a3c990771e
oai_identifier_str oai:scielo:S0100-06832022000100403
network_acronym_str SBCS-1
network_name_str Revista Brasileira de Ciência do Solo (Online)
repository_id_str
spelling Best tillage practices for eucalyptus growth and productivity: A review on the Brazilian experienceEucalyptus forestrysoil tillagesoil compactionsubsoilingpit-drilling tillageABSTRACT Commercial eucalyptus forestry has significantly increased in the last decades to supply the growing demand for forest goods (pulp, paper, sawmill, by-product industries, and biomass for bioenergy and biofuels). Among factors most influencing forest productivity, the soil physical environment is very important and can be harmful or beneficial to trees. In the effort to increase environmental and economic sustainability of commercial plantations, in this literature review, we summarize relationships between soil type and properties, forest rotation, and forest growth and productivity. Mechanized soil tillage must consider soil type, particularly land slope, soil drainage and depth, along with forest rotation (first or higher-order). Soil surveys, including soil physical properties (e.g., compaction, granulometry including gravel) and morphological attributes (e.g., horizons, solum depth, subsurface drainage impedance), are thus essential for foresters to make knowledgeable decisions on soil tillage, provided tillage is the single most costly practice in eucalyptus forestry. Subsoiling is the most common soil tillage for eucalyptus, but it is best for deep, drained soils. Existing scientific publications show, for clayey cohesive or compacted soils, tillage depth might be of 0.70 m (deep subsoiling) to ameliorate compacted soil of low microporosity and restriction to root growth, but 0.50 m (shallow) subsoiling plus ridding produce similar results. The latter, nonetheless, has a higher operational cost. Downslope subsoiling on sloppy lands increases the risk for soil erosion, which may be reduced by interrupting ripping, mechanized hole- or pit-drilling with low operational cost. Chiseling performed for fertilizer application (minimum 0.25 m deep) might be the only tillage required for non-compacted sandy soils. Mechanical or manual pitting could also be an option for second or higher rotations, but results show crop early-growth is restricted, possibly because of root confinement. For second or higher rotations, stumps require cutting to allow cross-slope tractor traffic and tillage. Subsoiling plus ridging or bedding is required in low-drainage or shallow soils to increase the soil volume to be explored by roots. The ridges can be built by grade bedding or terracing plows. In areas with waterlogging, drainage and ridging without subsoiling are necessary. Research opportunities include further studies for slopy lands and low-drainage or compacted soils, tillage affecting soil erosion and eucalyptus productivity, equipment for special tillage, and mapping compaction risk and special tillage needs.Sociedade Brasileira de Ciência do Solo2022-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832022000100403Revista Brasileira de Ciência do Solo v.46 2022reponame:Revista Brasileira de Ciência do Solo (Online)instname:Sociedade Brasileira de Ciência do Solo (SBCS)instacron:SBCS10.36783/18069657rbcs20210091info:eu-repo/semantics/openAccessSantos,Kristiana Fiorentin dosReichert,José Migueleng2022-03-18T00:00:00Zoai:scielo:S0100-06832022000100403Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=0100-0683&lng=es&nrm=isohttps://old.scielo.br/oai/scielo-oai.php||sbcs@ufv.br1806-96570100-0683opendoar:2022-03-18T00:00Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS)false
dc.title.none.fl_str_mv Best tillage practices for eucalyptus growth and productivity: A review on the Brazilian experience
title Best tillage practices for eucalyptus growth and productivity: A review on the Brazilian experience
spellingShingle Best tillage practices for eucalyptus growth and productivity: A review on the Brazilian experience
Santos,Kristiana Fiorentin dos
Eucalyptus forestry
soil tillage
soil compaction
subsoiling
pit-drilling tillage
title_short Best tillage practices for eucalyptus growth and productivity: A review on the Brazilian experience
title_full Best tillage practices for eucalyptus growth and productivity: A review on the Brazilian experience
title_fullStr Best tillage practices for eucalyptus growth and productivity: A review on the Brazilian experience
title_full_unstemmed Best tillage practices for eucalyptus growth and productivity: A review on the Brazilian experience
title_sort Best tillage practices for eucalyptus growth and productivity: A review on the Brazilian experience
author Santos,Kristiana Fiorentin dos
author_facet Santos,Kristiana Fiorentin dos
Reichert,José Miguel
author_role author
author2 Reichert,José Miguel
author2_role author
dc.contributor.author.fl_str_mv Santos,Kristiana Fiorentin dos
Reichert,José Miguel
dc.subject.por.fl_str_mv Eucalyptus forestry
soil tillage
soil compaction
subsoiling
pit-drilling tillage
topic Eucalyptus forestry
soil tillage
soil compaction
subsoiling
pit-drilling tillage
description ABSTRACT Commercial eucalyptus forestry has significantly increased in the last decades to supply the growing demand for forest goods (pulp, paper, sawmill, by-product industries, and biomass for bioenergy and biofuels). Among factors most influencing forest productivity, the soil physical environment is very important and can be harmful or beneficial to trees. In the effort to increase environmental and economic sustainability of commercial plantations, in this literature review, we summarize relationships between soil type and properties, forest rotation, and forest growth and productivity. Mechanized soil tillage must consider soil type, particularly land slope, soil drainage and depth, along with forest rotation (first or higher-order). Soil surveys, including soil physical properties (e.g., compaction, granulometry including gravel) and morphological attributes (e.g., horizons, solum depth, subsurface drainage impedance), are thus essential for foresters to make knowledgeable decisions on soil tillage, provided tillage is the single most costly practice in eucalyptus forestry. Subsoiling is the most common soil tillage for eucalyptus, but it is best for deep, drained soils. Existing scientific publications show, for clayey cohesive or compacted soils, tillage depth might be of 0.70 m (deep subsoiling) to ameliorate compacted soil of low microporosity and restriction to root growth, but 0.50 m (shallow) subsoiling plus ridding produce similar results. The latter, nonetheless, has a higher operational cost. Downslope subsoiling on sloppy lands increases the risk for soil erosion, which may be reduced by interrupting ripping, mechanized hole- or pit-drilling with low operational cost. Chiseling performed for fertilizer application (minimum 0.25 m deep) might be the only tillage required for non-compacted sandy soils. Mechanical or manual pitting could also be an option for second or higher rotations, but results show crop early-growth is restricted, possibly because of root confinement. For second or higher rotations, stumps require cutting to allow cross-slope tractor traffic and tillage. Subsoiling plus ridging or bedding is required in low-drainage or shallow soils to increase the soil volume to be explored by roots. The ridges can be built by grade bedding or terracing plows. In areas with waterlogging, drainage and ridging without subsoiling are necessary. Research opportunities include further studies for slopy lands and low-drainage or compacted soils, tillage affecting soil erosion and eucalyptus productivity, equipment for special tillage, and mapping compaction risk and special tillage needs.
publishDate 2022
dc.date.none.fl_str_mv 2022-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832022000100403
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832022000100403
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.36783/18069657rbcs20210091
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Ciência do Solo
publisher.none.fl_str_mv Sociedade Brasileira de Ciência do Solo
dc.source.none.fl_str_mv Revista Brasileira de Ciência do Solo v.46 2022
reponame:Revista Brasileira de Ciência do Solo (Online)
instname:Sociedade Brasileira de Ciência do Solo (SBCS)
instacron:SBCS
instname_str Sociedade Brasileira de Ciência do Solo (SBCS)
instacron_str SBCS
institution SBCS
reponame_str Revista Brasileira de Ciência do Solo (Online)
collection Revista Brasileira de Ciência do Solo (Online)
repository.name.fl_str_mv Revista Brasileira de Ciência do Solo (Online) - Sociedade Brasileira de Ciência do Solo (SBCS)
repository.mail.fl_str_mv ||sbcs@ufv.br
_version_ 1752126522816200704