Multivariate analysis in mathematical model selection to describe Croton urucurana Baill drying kinetics

Detalhes bibliográficos
Autor(a) principal: LOPES ALVES,Jáliston Júlio
Data de Publicação: 2022
Outros Autores: RESENDE,Osvaldo, RIBEIRO NETO,Francisco de Araújo, RIBEIRO AGUIAR,Ana Carolina, FERREIRA VIEIRA BESSA,Jaqueline, QUEQUETO,Wellytton Darci
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Food Science and Technology (Campinas)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-20612022000100762
Resumo: Abstract The Croton urucurana Baill species is known in Brazil as “sangra d’água” and is popular due to its medicinal properties. For better processing of herbal medicines, it is essential that efficient drying and storage techniques are developed and that compounds are preserved. Therefore, this study aimed to select models through multivariate cluster analysis applying Akaike (AIC) and Bayesian information criteria (BIC) to describe Croton urucurana leaves drying kinetics at different temperatures (40-70 °C). The initial moisture content in Croton urucurana leaves was 1.791, 1.841, 2.196 and 2.144 kg water kg dry matter-1, and 8.25, 7.75, 4.25 and 2 hours were required to reach hygroscopic equilibrium, with a final moisture content of 0.134, 0.105, 0.065 and 0.0601 kg water kg dry matter-1, at 40, 50, 60 and 70 °C, respectively. The models with the greatest similarity to the experimental data were Diffusion Approximation; Cavalcanti Mata; Two-term; Two-term Exponential; Modified Henderson & Pabis; Logarithmic; Midilli; Page and Verma. The multivariate cluster technique associated with AIC and BIC criteria during model selection is a great applicability tool to help decision-making when evaluating the drying plant leaves. The Cavalcanti Mata mathematical model was selected to represent the drying kinetics.
id SBCTA-1_b803c31b65a6a6072b6359923a551025
oai_identifier_str oai:scielo:S0101-20612022000100762
network_acronym_str SBCTA-1
network_name_str Food Science and Technology (Campinas)
repository_id_str
spelling Multivariate analysis in mathematical model selection to describe Croton urucurana Baill drying kineticsmathematical modelingAIC and BICplant productspost-harvestAbstract The Croton urucurana Baill species is known in Brazil as “sangra d’água” and is popular due to its medicinal properties. For better processing of herbal medicines, it is essential that efficient drying and storage techniques are developed and that compounds are preserved. Therefore, this study aimed to select models through multivariate cluster analysis applying Akaike (AIC) and Bayesian information criteria (BIC) to describe Croton urucurana leaves drying kinetics at different temperatures (40-70 °C). The initial moisture content in Croton urucurana leaves was 1.791, 1.841, 2.196 and 2.144 kg water kg dry matter-1, and 8.25, 7.75, 4.25 and 2 hours were required to reach hygroscopic equilibrium, with a final moisture content of 0.134, 0.105, 0.065 and 0.0601 kg water kg dry matter-1, at 40, 50, 60 and 70 °C, respectively. The models with the greatest similarity to the experimental data were Diffusion Approximation; Cavalcanti Mata; Two-term; Two-term Exponential; Modified Henderson & Pabis; Logarithmic; Midilli; Page and Verma. The multivariate cluster technique associated with AIC and BIC criteria during model selection is a great applicability tool to help decision-making when evaluating the drying plant leaves. The Cavalcanti Mata mathematical model was selected to represent the drying kinetics.Sociedade Brasileira de Ciência e Tecnologia de Alimentos2022-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-20612022000100762Food Science and Technology v.42 2022reponame:Food Science and Technology (Campinas)instname:Sociedade Brasileira de Ciência e Tecnologia de Alimentos (SBCTA)instacron:SBCTA10.1590/fst.12821info:eu-repo/semantics/openAccessLOPES ALVES,Jáliston JúlioRESENDE,OsvaldoRIBEIRO NETO,Francisco de AraújoRIBEIRO AGUIAR,Ana CarolinaFERREIRA VIEIRA BESSA,JaquelineQUEQUETO,Wellytton Darcieng2022-02-22T00:00:00Zoai:scielo:S0101-20612022000100762Revistahttp://www.scielo.br/ctaONGhttps://old.scielo.br/oai/scielo-oai.php||revista@sbcta.org.br1678-457X0101-2061opendoar:2022-02-22T00:00Food Science and Technology (Campinas) - Sociedade Brasileira de Ciência e Tecnologia de Alimentos (SBCTA)false
dc.title.none.fl_str_mv Multivariate analysis in mathematical model selection to describe Croton urucurana Baill drying kinetics
title Multivariate analysis in mathematical model selection to describe Croton urucurana Baill drying kinetics
spellingShingle Multivariate analysis in mathematical model selection to describe Croton urucurana Baill drying kinetics
LOPES ALVES,Jáliston Júlio
mathematical modeling
AIC and BIC
plant products
post-harvest
title_short Multivariate analysis in mathematical model selection to describe Croton urucurana Baill drying kinetics
title_full Multivariate analysis in mathematical model selection to describe Croton urucurana Baill drying kinetics
title_fullStr Multivariate analysis in mathematical model selection to describe Croton urucurana Baill drying kinetics
title_full_unstemmed Multivariate analysis in mathematical model selection to describe Croton urucurana Baill drying kinetics
title_sort Multivariate analysis in mathematical model selection to describe Croton urucurana Baill drying kinetics
author LOPES ALVES,Jáliston Júlio
author_facet LOPES ALVES,Jáliston Júlio
RESENDE,Osvaldo
RIBEIRO NETO,Francisco de Araújo
RIBEIRO AGUIAR,Ana Carolina
FERREIRA VIEIRA BESSA,Jaqueline
QUEQUETO,Wellytton Darci
author_role author
author2 RESENDE,Osvaldo
RIBEIRO NETO,Francisco de Araújo
RIBEIRO AGUIAR,Ana Carolina
FERREIRA VIEIRA BESSA,Jaqueline
QUEQUETO,Wellytton Darci
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv LOPES ALVES,Jáliston Júlio
RESENDE,Osvaldo
RIBEIRO NETO,Francisco de Araújo
RIBEIRO AGUIAR,Ana Carolina
FERREIRA VIEIRA BESSA,Jaqueline
QUEQUETO,Wellytton Darci
dc.subject.por.fl_str_mv mathematical modeling
AIC and BIC
plant products
post-harvest
topic mathematical modeling
AIC and BIC
plant products
post-harvest
description Abstract The Croton urucurana Baill species is known in Brazil as “sangra d’água” and is popular due to its medicinal properties. For better processing of herbal medicines, it is essential that efficient drying and storage techniques are developed and that compounds are preserved. Therefore, this study aimed to select models through multivariate cluster analysis applying Akaike (AIC) and Bayesian information criteria (BIC) to describe Croton urucurana leaves drying kinetics at different temperatures (40-70 °C). The initial moisture content in Croton urucurana leaves was 1.791, 1.841, 2.196 and 2.144 kg water kg dry matter-1, and 8.25, 7.75, 4.25 and 2 hours were required to reach hygroscopic equilibrium, with a final moisture content of 0.134, 0.105, 0.065 and 0.0601 kg water kg dry matter-1, at 40, 50, 60 and 70 °C, respectively. The models with the greatest similarity to the experimental data were Diffusion Approximation; Cavalcanti Mata; Two-term; Two-term Exponential; Modified Henderson & Pabis; Logarithmic; Midilli; Page and Verma. The multivariate cluster technique associated with AIC and BIC criteria during model selection is a great applicability tool to help decision-making when evaluating the drying plant leaves. The Cavalcanti Mata mathematical model was selected to represent the drying kinetics.
publishDate 2022
dc.date.none.fl_str_mv 2022-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-20612022000100762
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-20612022000100762
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/fst.12821
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Ciência e Tecnologia de Alimentos
publisher.none.fl_str_mv Sociedade Brasileira de Ciência e Tecnologia de Alimentos
dc.source.none.fl_str_mv Food Science and Technology v.42 2022
reponame:Food Science and Technology (Campinas)
instname:Sociedade Brasileira de Ciência e Tecnologia de Alimentos (SBCTA)
instacron:SBCTA
instname_str Sociedade Brasileira de Ciência e Tecnologia de Alimentos (SBCTA)
instacron_str SBCTA
institution SBCTA
reponame_str Food Science and Technology (Campinas)
collection Food Science and Technology (Campinas)
repository.name.fl_str_mv Food Science and Technology (Campinas) - Sociedade Brasileira de Ciência e Tecnologia de Alimentos (SBCTA)
repository.mail.fl_str_mv ||revista@sbcta.org.br
_version_ 1752126332853026816