Critérios de informação e seleção de modelos lineares mistos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/45/45133/tde-17082020-100010/ |
Resumo: | O modelo linear misto é amplamente utilizado na análise de medidas repetidas e de dados longitudinais, e compreende duas abordagens. A primeira é apropriada quando estamos interessados em parâmetros populacionais (efeitos fixos) e a segunda é indicada quando os coeficientes individuais (efeitos aleatórios) são de interesse. A seleção de modelos mistos, quando realizada por meio de critérios de informação, leva em conta estas diferenças de abordagem: o Critério de Informação de Akaike (AIC) marginal baseia-se na log-verossimilhança marginal, e o Critério de Informação de Schwarz (BIC) é similar ao critério anterior, mas também inclui o número total de observações. O AIC condicional baseia-se na log-verossimilhança condicional aos efeitos aleatórios. Realizamos um estudo de simulação para observar o comportamento destes critérios frente a diversos cenários, concluindo que o AIC (marginal ou condicional) e o BIC apresentaram frequência de seleção do modelo correto elevada mesmo para tamanho amostral reduzido (n = 10), desde que a quantidade de observações por indivíduo seja elevada (m 13). Além disso, quanto mais correlacionados os dados, são necessários tanto tamanho amostral quanto número de observações por indivíduo maiores (n 30 e m 16, respectivamente) para detecção do modelo correto. Consideramos dois exemplos em que ilustramos a aplicação do AIC marginal e do AIC condicional. Mostramos que a seleção de modelos por intermédio dos critérios AIC e BIC é compatível com a análise de resíduos associada. |
id |
USP_7056c992cec8a1fd59f4a6c079edd707 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-17082020-100010 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Critérios de informação e seleção de modelos lineares mistosInformation criteria and linear mixed model selectionAICAICBICBICDados longitudinaisLongitudinal dataO modelo linear misto é amplamente utilizado na análise de medidas repetidas e de dados longitudinais, e compreende duas abordagens. A primeira é apropriada quando estamos interessados em parâmetros populacionais (efeitos fixos) e a segunda é indicada quando os coeficientes individuais (efeitos aleatórios) são de interesse. A seleção de modelos mistos, quando realizada por meio de critérios de informação, leva em conta estas diferenças de abordagem: o Critério de Informação de Akaike (AIC) marginal baseia-se na log-verossimilhança marginal, e o Critério de Informação de Schwarz (BIC) é similar ao critério anterior, mas também inclui o número total de observações. O AIC condicional baseia-se na log-verossimilhança condicional aos efeitos aleatórios. Realizamos um estudo de simulação para observar o comportamento destes critérios frente a diversos cenários, concluindo que o AIC (marginal ou condicional) e o BIC apresentaram frequência de seleção do modelo correto elevada mesmo para tamanho amostral reduzido (n = 10), desde que a quantidade de observações por indivíduo seja elevada (m 13). Além disso, quanto mais correlacionados os dados, são necessários tanto tamanho amostral quanto número de observações por indivíduo maiores (n 30 e m 16, respectivamente) para detecção do modelo correto. Consideramos dois exemplos em que ilustramos a aplicação do AIC marginal e do AIC condicional. Mostramos que a seleção de modelos por intermédio dos critérios AIC e BIC é compatível com a análise de resíduos associada.Linear mixed models are widely used in repeated measures and longitudinal data analysis, and comprehend two distinct approaches. The first is adequate when the interest lies on populational-averaged parameters (fixed effects) and the second is adequate when the subject-specific coefficients (random effects) are of interest. The selection of mixed models, when accomplished via information criteria, takes these different approaches into account: the marginal Akaike Information Criterion (AIC) is based on the marginal loglikelihood, and the Schwarz Information Criterion (BIC) is similar to the aforementioned criterion, but also includes the total number of observations. The conditional AIC is based on the conditional log-likelihood on the random effects. We performed a simulation study to observe the behavior of these criteria in various scenarios, concluding that the AIC (marginal ou conditional) and the BIC presented a high frequency of selection of the correct model even for small sample size (n = 10), provided that the number of individual observations is large (m 13). Besides that, the higher the correlation in the data, the higher the need for both the sample size and the number of individual observations to be large (n 30 e m 16, respectively) in order to detect the correct model. We considered two examples in which we ilustrate the application of the marginal AIC and the conditional AIC. We showed that the model selection through the AIC and the BIC is compatible with the associated residual analysis.Biblioteca Digitais de Teses e Dissertações da USPSinger, Julio da MottaCruz, Rodrigo Marques da2020-06-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45133/tde-17082020-100010/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-08-15T20:22:02Zoai:teses.usp.br:tde-17082020-100010Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-15T20:22:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Critérios de informação e seleção de modelos lineares mistos Information criteria and linear mixed model selection |
title |
Critérios de informação e seleção de modelos lineares mistos |
spellingShingle |
Critérios de informação e seleção de modelos lineares mistos Cruz, Rodrigo Marques da AIC AIC BIC BIC Dados longitudinais Longitudinal data |
title_short |
Critérios de informação e seleção de modelos lineares mistos |
title_full |
Critérios de informação e seleção de modelos lineares mistos |
title_fullStr |
Critérios de informação e seleção de modelos lineares mistos |
title_full_unstemmed |
Critérios de informação e seleção de modelos lineares mistos |
title_sort |
Critérios de informação e seleção de modelos lineares mistos |
author |
Cruz, Rodrigo Marques da |
author_facet |
Cruz, Rodrigo Marques da |
author_role |
author |
dc.contributor.none.fl_str_mv |
Singer, Julio da Motta |
dc.contributor.author.fl_str_mv |
Cruz, Rodrigo Marques da |
dc.subject.por.fl_str_mv |
AIC AIC BIC BIC Dados longitudinais Longitudinal data |
topic |
AIC AIC BIC BIC Dados longitudinais Longitudinal data |
description |
O modelo linear misto é amplamente utilizado na análise de medidas repetidas e de dados longitudinais, e compreende duas abordagens. A primeira é apropriada quando estamos interessados em parâmetros populacionais (efeitos fixos) e a segunda é indicada quando os coeficientes individuais (efeitos aleatórios) são de interesse. A seleção de modelos mistos, quando realizada por meio de critérios de informação, leva em conta estas diferenças de abordagem: o Critério de Informação de Akaike (AIC) marginal baseia-se na log-verossimilhança marginal, e o Critério de Informação de Schwarz (BIC) é similar ao critério anterior, mas também inclui o número total de observações. O AIC condicional baseia-se na log-verossimilhança condicional aos efeitos aleatórios. Realizamos um estudo de simulação para observar o comportamento destes critérios frente a diversos cenários, concluindo que o AIC (marginal ou condicional) e o BIC apresentaram frequência de seleção do modelo correto elevada mesmo para tamanho amostral reduzido (n = 10), desde que a quantidade de observações por indivíduo seja elevada (m 13). Além disso, quanto mais correlacionados os dados, são necessários tanto tamanho amostral quanto número de observações por indivíduo maiores (n 30 e m 16, respectivamente) para detecção do modelo correto. Consideramos dois exemplos em que ilustramos a aplicação do AIC marginal e do AIC condicional. Mostramos que a seleção de modelos por intermédio dos critérios AIC e BIC é compatível com a análise de resíduos associada. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-06-17 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/45/45133/tde-17082020-100010/ |
url |
https://www.teses.usp.br/teses/disponiveis/45/45133/tde-17082020-100010/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257046713368576 |