RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUS
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Engenharia Agrícola |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162022000800109 |
Resumo: | ABSTRACT Eucalyptus (Eucalyptus urograndis) production has significantly advanced over the past few years in Brazil, especially with regard to acreage and productivity. Machine learning has made significant advances in most varied fields of agrarian sciences. In this context, this study aimed to use physicochemical variables of the soil as well as climatic and dendrometric variables of eucalyptus to predict its height using the random forest algorithm. The study was conducted in the municipality of Três Lagoas, in Mato Grosso do Sul, Brazil. The original database consisted of 49 soil physicochemical variables collected at 0–0.20 m and 0.20–0.40 m, two dendrometric and four climatic variables, and one response variable related to the height of eucalyptus. A correlation matrix was applied to select variables. Furthermore, modeling was performed using the random forest algorithm, which performed well (r = 0.98, R2 = 0.96) in predicting the height of eucalyptus. Overall, the most important variables to predict the eucalyptus plant height included diameter at breast height (DBH), phosphorus content (P1), gravimetric moisture (GM1) at a soil depth between 0.00 m and 0.20 m, and exchangeable aluminum content (Al2) between 0.20 m to 0.40 m of soil. |
id |
SBEA-1_0f971978538ff06e2644fc0fd8a02dbe |
---|---|
oai_identifier_str |
oai:scielo:S0100-69162022000800109 |
network_acronym_str |
SBEA-1 |
network_name_str |
Engenharia Agrícola |
repository_id_str |
|
spelling |
RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUSPhysicochemical variables of soilmachine learningsoil phosphorus contentsoil moistureexchangeable aluminumABSTRACT Eucalyptus (Eucalyptus urograndis) production has significantly advanced over the past few years in Brazil, especially with regard to acreage and productivity. Machine learning has made significant advances in most varied fields of agrarian sciences. In this context, this study aimed to use physicochemical variables of the soil as well as climatic and dendrometric variables of eucalyptus to predict its height using the random forest algorithm. The study was conducted in the municipality of Três Lagoas, in Mato Grosso do Sul, Brazil. The original database consisted of 49 soil physicochemical variables collected at 0–0.20 m and 0.20–0.40 m, two dendrometric and four climatic variables, and one response variable related to the height of eucalyptus. A correlation matrix was applied to select variables. Furthermore, modeling was performed using the random forest algorithm, which performed well (r = 0.98, R2 = 0.96) in predicting the height of eucalyptus. Overall, the most important variables to predict the eucalyptus plant height included diameter at breast height (DBH), phosphorus content (P1), gravimetric moisture (GM1) at a soil depth between 0.00 m and 0.20 m, and exchangeable aluminum content (Al2) between 0.20 m to 0.40 m of soil.Associação Brasileira de Engenharia Agrícola2022-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162022000800109Engenharia Agrícola v.42 n.spe 2022reponame:Engenharia Agrícolainstname:Associação Brasileira de Engenharia Agrícola (SBEA)instacron:SBEA10.1590/1809-4430-eng.agric.v42nepe20210153/2022info:eu-repo/semantics/openAccessLima,Elizeu de S.Souza,Zigomar M. deOliveira,Stanley R. de M.Montanari,RafaelFarhate,Camila V. V.eng2022-04-01T00:00:00Zoai:scielo:S0100-69162022000800109Revistahttp://www.engenhariaagricola.org.br/ORGhttps://old.scielo.br/oai/scielo-oai.phprevistasbea@sbea.org.br||sbea@sbea.org.br1809-44300100-6916opendoar:2022-04-01T00:00Engenharia Agrícola - Associação Brasileira de Engenharia Agrícola (SBEA)false |
dc.title.none.fl_str_mv |
RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUS |
title |
RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUS |
spellingShingle |
RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUS Lima,Elizeu de S. Physicochemical variables of soil machine learning soil phosphorus content soil moisture exchangeable aluminum |
title_short |
RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUS |
title_full |
RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUS |
title_fullStr |
RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUS |
title_full_unstemmed |
RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUS |
title_sort |
RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUS |
author |
Lima,Elizeu de S. |
author_facet |
Lima,Elizeu de S. Souza,Zigomar M. de Oliveira,Stanley R. de M. Montanari,Rafael Farhate,Camila V. V. |
author_role |
author |
author2 |
Souza,Zigomar M. de Oliveira,Stanley R. de M. Montanari,Rafael Farhate,Camila V. V. |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Lima,Elizeu de S. Souza,Zigomar M. de Oliveira,Stanley R. de M. Montanari,Rafael Farhate,Camila V. V. |
dc.subject.por.fl_str_mv |
Physicochemical variables of soil machine learning soil phosphorus content soil moisture exchangeable aluminum |
topic |
Physicochemical variables of soil machine learning soil phosphorus content soil moisture exchangeable aluminum |
description |
ABSTRACT Eucalyptus (Eucalyptus urograndis) production has significantly advanced over the past few years in Brazil, especially with regard to acreage and productivity. Machine learning has made significant advances in most varied fields of agrarian sciences. In this context, this study aimed to use physicochemical variables of the soil as well as climatic and dendrometric variables of eucalyptus to predict its height using the random forest algorithm. The study was conducted in the municipality of Três Lagoas, in Mato Grosso do Sul, Brazil. The original database consisted of 49 soil physicochemical variables collected at 0–0.20 m and 0.20–0.40 m, two dendrometric and four climatic variables, and one response variable related to the height of eucalyptus. A correlation matrix was applied to select variables. Furthermore, modeling was performed using the random forest algorithm, which performed well (r = 0.98, R2 = 0.96) in predicting the height of eucalyptus. Overall, the most important variables to predict the eucalyptus plant height included diameter at breast height (DBH), phosphorus content (P1), gravimetric moisture (GM1) at a soil depth between 0.00 m and 0.20 m, and exchangeable aluminum content (Al2) between 0.20 m to 0.40 m of soil. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162022000800109 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162022000800109 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1809-4430-eng.agric.v42nepe20210153/2022 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Engenharia Agrícola |
publisher.none.fl_str_mv |
Associação Brasileira de Engenharia Agrícola |
dc.source.none.fl_str_mv |
Engenharia Agrícola v.42 n.spe 2022 reponame:Engenharia Agrícola instname:Associação Brasileira de Engenharia Agrícola (SBEA) instacron:SBEA |
instname_str |
Associação Brasileira de Engenharia Agrícola (SBEA) |
instacron_str |
SBEA |
institution |
SBEA |
reponame_str |
Engenharia Agrícola |
collection |
Engenharia Agrícola |
repository.name.fl_str_mv |
Engenharia Agrícola - Associação Brasileira de Engenharia Agrícola (SBEA) |
repository.mail.fl_str_mv |
revistasbea@sbea.org.br||sbea@sbea.org.br |
_version_ |
1752126275483336704 |