RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUS

Detalhes bibliográficos
Autor(a) principal: Lima,Elizeu de S.
Data de Publicação: 2022
Outros Autores: Souza,Zigomar M. de, Oliveira,Stanley R. de M., Montanari,Rafael, Farhate,Camila V. V.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Engenharia Agrícola
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162022000800109
Resumo: ABSTRACT Eucalyptus (Eucalyptus urograndis) production has significantly advanced over the past few years in Brazil, especially with regard to acreage and productivity. Machine learning has made significant advances in most varied fields of agrarian sciences. In this context, this study aimed to use physicochemical variables of the soil as well as climatic and dendrometric variables of eucalyptus to predict its height using the random forest algorithm. The study was conducted in the municipality of Três Lagoas, in Mato Grosso do Sul, Brazil. The original database consisted of 49 soil physicochemical variables collected at 0–0.20 m and 0.20–0.40 m, two dendrometric and four climatic variables, and one response variable related to the height of eucalyptus. A correlation matrix was applied to select variables. Furthermore, modeling was performed using the random forest algorithm, which performed well (r = 0.98, R2 = 0.96) in predicting the height of eucalyptus. Overall, the most important variables to predict the eucalyptus plant height included diameter at breast height (DBH), phosphorus content (P1), gravimetric moisture (GM1) at a soil depth between 0.00 m and 0.20 m, and exchangeable aluminum content (Al2) between 0.20 m to 0.40 m of soil.
id SBEA-1_0f971978538ff06e2644fc0fd8a02dbe
oai_identifier_str oai:scielo:S0100-69162022000800109
network_acronym_str SBEA-1
network_name_str Engenharia Agrícola
repository_id_str
spelling RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUSPhysicochemical variables of soilmachine learningsoil phosphorus contentsoil moistureexchangeable aluminumABSTRACT Eucalyptus (Eucalyptus urograndis) production has significantly advanced over the past few years in Brazil, especially with regard to acreage and productivity. Machine learning has made significant advances in most varied fields of agrarian sciences. In this context, this study aimed to use physicochemical variables of the soil as well as climatic and dendrometric variables of eucalyptus to predict its height using the random forest algorithm. The study was conducted in the municipality of Três Lagoas, in Mato Grosso do Sul, Brazil. The original database consisted of 49 soil physicochemical variables collected at 0–0.20 m and 0.20–0.40 m, two dendrometric and four climatic variables, and one response variable related to the height of eucalyptus. A correlation matrix was applied to select variables. Furthermore, modeling was performed using the random forest algorithm, which performed well (r = 0.98, R2 = 0.96) in predicting the height of eucalyptus. Overall, the most important variables to predict the eucalyptus plant height included diameter at breast height (DBH), phosphorus content (P1), gravimetric moisture (GM1) at a soil depth between 0.00 m and 0.20 m, and exchangeable aluminum content (Al2) between 0.20 m to 0.40 m of soil.Associação Brasileira de Engenharia Agrícola2022-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162022000800109Engenharia Agrícola v.42 n.spe 2022reponame:Engenharia Agrícolainstname:Associação Brasileira de Engenharia Agrícola (SBEA)instacron:SBEA10.1590/1809-4430-eng.agric.v42nepe20210153/2022info:eu-repo/semantics/openAccessLima,Elizeu de S.Souza,Zigomar M. deOliveira,Stanley R. de M.Montanari,RafaelFarhate,Camila V. V.eng2022-04-01T00:00:00Zoai:scielo:S0100-69162022000800109Revistahttp://www.engenhariaagricola.org.br/ORGhttps://old.scielo.br/oai/scielo-oai.phprevistasbea@sbea.org.br||sbea@sbea.org.br1809-44300100-6916opendoar:2022-04-01T00:00Engenharia Agrícola - Associação Brasileira de Engenharia Agrícola (SBEA)false
dc.title.none.fl_str_mv RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUS
title RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUS
spellingShingle RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUS
Lima,Elizeu de S.
Physicochemical variables of soil
machine learning
soil phosphorus content
soil moisture
exchangeable aluminum
title_short RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUS
title_full RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUS
title_fullStr RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUS
title_full_unstemmed RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUS
title_sort RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUS
author Lima,Elizeu de S.
author_facet Lima,Elizeu de S.
Souza,Zigomar M. de
Oliveira,Stanley R. de M.
Montanari,Rafael
Farhate,Camila V. V.
author_role author
author2 Souza,Zigomar M. de
Oliveira,Stanley R. de M.
Montanari,Rafael
Farhate,Camila V. V.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Lima,Elizeu de S.
Souza,Zigomar M. de
Oliveira,Stanley R. de M.
Montanari,Rafael
Farhate,Camila V. V.
dc.subject.por.fl_str_mv Physicochemical variables of soil
machine learning
soil phosphorus content
soil moisture
exchangeable aluminum
topic Physicochemical variables of soil
machine learning
soil phosphorus content
soil moisture
exchangeable aluminum
description ABSTRACT Eucalyptus (Eucalyptus urograndis) production has significantly advanced over the past few years in Brazil, especially with regard to acreage and productivity. Machine learning has made significant advances in most varied fields of agrarian sciences. In this context, this study aimed to use physicochemical variables of the soil as well as climatic and dendrometric variables of eucalyptus to predict its height using the random forest algorithm. The study was conducted in the municipality of Três Lagoas, in Mato Grosso do Sul, Brazil. The original database consisted of 49 soil physicochemical variables collected at 0–0.20 m and 0.20–0.40 m, two dendrometric and four climatic variables, and one response variable related to the height of eucalyptus. A correlation matrix was applied to select variables. Furthermore, modeling was performed using the random forest algorithm, which performed well (r = 0.98, R2 = 0.96) in predicting the height of eucalyptus. Overall, the most important variables to predict the eucalyptus plant height included diameter at breast height (DBH), phosphorus content (P1), gravimetric moisture (GM1) at a soil depth between 0.00 m and 0.20 m, and exchangeable aluminum content (Al2) between 0.20 m to 0.40 m of soil.
publishDate 2022
dc.date.none.fl_str_mv 2022-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162022000800109
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162022000800109
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1809-4430-eng.agric.v42nepe20210153/2022
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Engenharia Agrícola
publisher.none.fl_str_mv Associação Brasileira de Engenharia Agrícola
dc.source.none.fl_str_mv Engenharia Agrícola v.42 n.spe 2022
reponame:Engenharia Agrícola
instname:Associação Brasileira de Engenharia Agrícola (SBEA)
instacron:SBEA
instname_str Associação Brasileira de Engenharia Agrícola (SBEA)
instacron_str SBEA
institution SBEA
reponame_str Engenharia Agrícola
collection Engenharia Agrícola
repository.name.fl_str_mv Engenharia Agrícola - Associação Brasileira de Engenharia Agrícola (SBEA)
repository.mail.fl_str_mv revistasbea@sbea.org.br||sbea@sbea.org.br
_version_ 1752126275483336704