CROP CLASSIFICATION BASED ON A GAOFEN 1/WIDE-FIELD-VIEW TIME SERIES
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Engenharia Agrícola |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162022000200205 |
Resumo: | ABSTRACT The accurate acquisition of crop planting area information allows for agricultural management departments to understand crop production information promptly. Concurrently, support vector machine (SVM) algorithms are unable to determine parameter combinations in remote sensing image crop classification to obtain optimal classification results. To solve this issue, this paper proposes an SVM that is optimized by the adaptive mutation particle swarm optimization algorithm. To test the algorithm, we undertook an experiment in Acheng District, Harbin City, Heilongjiang province, China, using Gaofen 1/wide-field-view satellite images to construct a time series for various vegetation indices. The SVM model with optimized parameters was compared with a traditional backpropagation neural network, a decision tree, and an SVM without parameter optimization. The experimental results verified that the improved SVM model obtained the highest classification accuracy. |
id |
SBEA-1_3c98618c6383e8bb54e1850cb6723230 |
---|---|
oai_identifier_str |
oai:scielo:S0100-69162022000200205 |
network_acronym_str |
SBEA-1 |
network_name_str |
Engenharia Agrícola |
repository_id_str |
|
spelling |
CROP CLASSIFICATION BASED ON A GAOFEN 1/WIDE-FIELD-VIEW TIME SERIEScrop classificationvegetation indextime seriessupport vector machinesadaptive mutation particle swarm optimizationABSTRACT The accurate acquisition of crop planting area information allows for agricultural management departments to understand crop production information promptly. Concurrently, support vector machine (SVM) algorithms are unable to determine parameter combinations in remote sensing image crop classification to obtain optimal classification results. To solve this issue, this paper proposes an SVM that is optimized by the adaptive mutation particle swarm optimization algorithm. To test the algorithm, we undertook an experiment in Acheng District, Harbin City, Heilongjiang province, China, using Gaofen 1/wide-field-view satellite images to construct a time series for various vegetation indices. The SVM model with optimized parameters was compared with a traditional backpropagation neural network, a decision tree, and an SVM without parameter optimization. The experimental results verified that the improved SVM model obtained the highest classification accuracy.Associação Brasileira de Engenharia Agrícola2022-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162022000200205Engenharia Agrícola v.42 n.2 2022reponame:Engenharia Agrícolainstname:Associação Brasileira de Engenharia Agrícola (SBEA)instacron:SBEA10.1590/1809-4430-eng.agric.v42n2e20210184/2022info:eu-repo/semantics/openAccessJia,YinjiangZhang,XiaoyuZhang,HuaijingSu,Zhongbineng2022-04-18T00:00:00Zoai:scielo:S0100-69162022000200205Revistahttp://www.engenhariaagricola.org.br/ORGhttps://old.scielo.br/oai/scielo-oai.phprevistasbea@sbea.org.br||sbea@sbea.org.br1809-44300100-6916opendoar:2022-04-18T00:00Engenharia Agrícola - Associação Brasileira de Engenharia Agrícola (SBEA)false |
dc.title.none.fl_str_mv |
CROP CLASSIFICATION BASED ON A GAOFEN 1/WIDE-FIELD-VIEW TIME SERIES |
title |
CROP CLASSIFICATION BASED ON A GAOFEN 1/WIDE-FIELD-VIEW TIME SERIES |
spellingShingle |
CROP CLASSIFICATION BASED ON A GAOFEN 1/WIDE-FIELD-VIEW TIME SERIES Jia,Yinjiang crop classification vegetation index time series support vector machines adaptive mutation particle swarm optimization |
title_short |
CROP CLASSIFICATION BASED ON A GAOFEN 1/WIDE-FIELD-VIEW TIME SERIES |
title_full |
CROP CLASSIFICATION BASED ON A GAOFEN 1/WIDE-FIELD-VIEW TIME SERIES |
title_fullStr |
CROP CLASSIFICATION BASED ON A GAOFEN 1/WIDE-FIELD-VIEW TIME SERIES |
title_full_unstemmed |
CROP CLASSIFICATION BASED ON A GAOFEN 1/WIDE-FIELD-VIEW TIME SERIES |
title_sort |
CROP CLASSIFICATION BASED ON A GAOFEN 1/WIDE-FIELD-VIEW TIME SERIES |
author |
Jia,Yinjiang |
author_facet |
Jia,Yinjiang Zhang,Xiaoyu Zhang,Huaijing Su,Zhongbin |
author_role |
author |
author2 |
Zhang,Xiaoyu Zhang,Huaijing Su,Zhongbin |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Jia,Yinjiang Zhang,Xiaoyu Zhang,Huaijing Su,Zhongbin |
dc.subject.por.fl_str_mv |
crop classification vegetation index time series support vector machines adaptive mutation particle swarm optimization |
topic |
crop classification vegetation index time series support vector machines adaptive mutation particle swarm optimization |
description |
ABSTRACT The accurate acquisition of crop planting area information allows for agricultural management departments to understand crop production information promptly. Concurrently, support vector machine (SVM) algorithms are unable to determine parameter combinations in remote sensing image crop classification to obtain optimal classification results. To solve this issue, this paper proposes an SVM that is optimized by the adaptive mutation particle swarm optimization algorithm. To test the algorithm, we undertook an experiment in Acheng District, Harbin City, Heilongjiang province, China, using Gaofen 1/wide-field-view satellite images to construct a time series for various vegetation indices. The SVM model with optimized parameters was compared with a traditional backpropagation neural network, a decision tree, and an SVM without parameter optimization. The experimental results verified that the improved SVM model obtained the highest classification accuracy. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162022000200205 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162022000200205 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1809-4430-eng.agric.v42n2e20210184/2022 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Engenharia Agrícola |
publisher.none.fl_str_mv |
Associação Brasileira de Engenharia Agrícola |
dc.source.none.fl_str_mv |
Engenharia Agrícola v.42 n.2 2022 reponame:Engenharia Agrícola instname:Associação Brasileira de Engenharia Agrícola (SBEA) instacron:SBEA |
instname_str |
Associação Brasileira de Engenharia Agrícola (SBEA) |
instacron_str |
SBEA |
institution |
SBEA |
reponame_str |
Engenharia Agrícola |
collection |
Engenharia Agrícola |
repository.name.fl_str_mv |
Engenharia Agrícola - Associação Brasileira de Engenharia Agrícola (SBEA) |
repository.mail.fl_str_mv |
revistasbea@sbea.org.br||sbea@sbea.org.br |
_version_ |
1752126275316613120 |