CROP CLASSIFICATION BASED ON A GAOFEN 1/WIDE-FIELD-VIEW TIME SERIES

Detalhes bibliográficos
Autor(a) principal: Jia,Yinjiang
Data de Publicação: 2022
Outros Autores: Zhang,Xiaoyu, Zhang,Huaijing, Su,Zhongbin
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Engenharia Agrícola
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162022000200205
Resumo: ABSTRACT The accurate acquisition of crop planting area information allows for agricultural management departments to understand crop production information promptly. Concurrently, support vector machine (SVM) algorithms are unable to determine parameter combinations in remote sensing image crop classification to obtain optimal classification results. To solve this issue, this paper proposes an SVM that is optimized by the adaptive mutation particle swarm optimization algorithm. To test the algorithm, we undertook an experiment in Acheng District, Harbin City, Heilongjiang province, China, using Gaofen 1/wide-field-view satellite images to construct a time series for various vegetation indices. The SVM model with optimized parameters was compared with a traditional backpropagation neural network, a decision tree, and an SVM without parameter optimization. The experimental results verified that the improved SVM model obtained the highest classification accuracy.
id SBEA-1_3c98618c6383e8bb54e1850cb6723230
oai_identifier_str oai:scielo:S0100-69162022000200205
network_acronym_str SBEA-1
network_name_str Engenharia Agrícola
repository_id_str
spelling CROP CLASSIFICATION BASED ON A GAOFEN 1/WIDE-FIELD-VIEW TIME SERIEScrop classificationvegetation indextime seriessupport vector machinesadaptive mutation particle swarm optimizationABSTRACT The accurate acquisition of crop planting area information allows for agricultural management departments to understand crop production information promptly. Concurrently, support vector machine (SVM) algorithms are unable to determine parameter combinations in remote sensing image crop classification to obtain optimal classification results. To solve this issue, this paper proposes an SVM that is optimized by the adaptive mutation particle swarm optimization algorithm. To test the algorithm, we undertook an experiment in Acheng District, Harbin City, Heilongjiang province, China, using Gaofen 1/wide-field-view satellite images to construct a time series for various vegetation indices. The SVM model with optimized parameters was compared with a traditional backpropagation neural network, a decision tree, and an SVM without parameter optimization. The experimental results verified that the improved SVM model obtained the highest classification accuracy.Associação Brasileira de Engenharia Agrícola2022-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162022000200205Engenharia Agrícola v.42 n.2 2022reponame:Engenharia Agrícolainstname:Associação Brasileira de Engenharia Agrícola (SBEA)instacron:SBEA10.1590/1809-4430-eng.agric.v42n2e20210184/2022info:eu-repo/semantics/openAccessJia,YinjiangZhang,XiaoyuZhang,HuaijingSu,Zhongbineng2022-04-18T00:00:00Zoai:scielo:S0100-69162022000200205Revistahttp://www.engenhariaagricola.org.br/ORGhttps://old.scielo.br/oai/scielo-oai.phprevistasbea@sbea.org.br||sbea@sbea.org.br1809-44300100-6916opendoar:2022-04-18T00:00Engenharia Agrícola - Associação Brasileira de Engenharia Agrícola (SBEA)false
dc.title.none.fl_str_mv CROP CLASSIFICATION BASED ON A GAOFEN 1/WIDE-FIELD-VIEW TIME SERIES
title CROP CLASSIFICATION BASED ON A GAOFEN 1/WIDE-FIELD-VIEW TIME SERIES
spellingShingle CROP CLASSIFICATION BASED ON A GAOFEN 1/WIDE-FIELD-VIEW TIME SERIES
Jia,Yinjiang
crop classification
vegetation index
time series
support vector machines
adaptive mutation particle swarm optimization
title_short CROP CLASSIFICATION BASED ON A GAOFEN 1/WIDE-FIELD-VIEW TIME SERIES
title_full CROP CLASSIFICATION BASED ON A GAOFEN 1/WIDE-FIELD-VIEW TIME SERIES
title_fullStr CROP CLASSIFICATION BASED ON A GAOFEN 1/WIDE-FIELD-VIEW TIME SERIES
title_full_unstemmed CROP CLASSIFICATION BASED ON A GAOFEN 1/WIDE-FIELD-VIEW TIME SERIES
title_sort CROP CLASSIFICATION BASED ON A GAOFEN 1/WIDE-FIELD-VIEW TIME SERIES
author Jia,Yinjiang
author_facet Jia,Yinjiang
Zhang,Xiaoyu
Zhang,Huaijing
Su,Zhongbin
author_role author
author2 Zhang,Xiaoyu
Zhang,Huaijing
Su,Zhongbin
author2_role author
author
author
dc.contributor.author.fl_str_mv Jia,Yinjiang
Zhang,Xiaoyu
Zhang,Huaijing
Su,Zhongbin
dc.subject.por.fl_str_mv crop classification
vegetation index
time series
support vector machines
adaptive mutation particle swarm optimization
topic crop classification
vegetation index
time series
support vector machines
adaptive mutation particle swarm optimization
description ABSTRACT The accurate acquisition of crop planting area information allows for agricultural management departments to understand crop production information promptly. Concurrently, support vector machine (SVM) algorithms are unable to determine parameter combinations in remote sensing image crop classification to obtain optimal classification results. To solve this issue, this paper proposes an SVM that is optimized by the adaptive mutation particle swarm optimization algorithm. To test the algorithm, we undertook an experiment in Acheng District, Harbin City, Heilongjiang province, China, using Gaofen 1/wide-field-view satellite images to construct a time series for various vegetation indices. The SVM model with optimized parameters was compared with a traditional backpropagation neural network, a decision tree, and an SVM without parameter optimization. The experimental results verified that the improved SVM model obtained the highest classification accuracy.
publishDate 2022
dc.date.none.fl_str_mv 2022-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162022000200205
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162022000200205
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1809-4430-eng.agric.v42n2e20210184/2022
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Engenharia Agrícola
publisher.none.fl_str_mv Associação Brasileira de Engenharia Agrícola
dc.source.none.fl_str_mv Engenharia Agrícola v.42 n.2 2022
reponame:Engenharia Agrícola
instname:Associação Brasileira de Engenharia Agrícola (SBEA)
instacron:SBEA
instname_str Associação Brasileira de Engenharia Agrícola (SBEA)
instacron_str SBEA
institution SBEA
reponame_str Engenharia Agrícola
collection Engenharia Agrícola
repository.name.fl_str_mv Engenharia Agrícola - Associação Brasileira de Engenharia Agrícola (SBEA)
repository.mail.fl_str_mv revistasbea@sbea.org.br||sbea@sbea.org.br
_version_ 1752126275316613120