CLASSIFICATION OF MACAW PALM FRUITS FROM COLORIMETRIC PROPERTIES FOR DETERMINING THE HARVEST MOMENT
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Engenharia Agrícola |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162018000400634 |
Resumo: | ABSTRACT Macaw palm (Acrocomia aculeata) is a promising crop for biofuel production due to the high concentration of its fruit oil, but the harvest date is an issue to be better understood so it could be cultivated on an industrial scale. The aim of this study was to use the colorimetric properties of the macaw palm fruits to develop a neural network classifier to determine the ideal moment for harvesting, based on the oil content of the fruit mesocarp. During nine weeks of maturation were sampled 900 fruits of macaw palm fruits and the colorimetric properties of the RGB, HSI and CIELab color models were used to classify the fruits into immature and mature fruits. Kappa index and the overall accuracy values were used to access the classifier performance. The classifiers based on RGB parameters and on hue were considered equivalents having a Kappa index of 0.901 and 0.942, respectively, indicating the 59th week of maturation as the ideal time to harvest with the highest oil content. |
id |
SBEA-1_4730b7fe8796340299d13576a5c9d91b |
---|---|
oai_identifier_str |
oai:scielo:S0100-69162018000400634 |
network_acronym_str |
SBEA-1 |
network_name_str |
Engenharia Agrícola |
repository_id_str |
|
spelling |
CLASSIFICATION OF MACAW PALM FRUITS FROM COLORIMETRIC PROPERTIES FOR DETERMINING THE HARVEST MOMENTdigital imagesmaturationneural networksoil contentABSTRACT Macaw palm (Acrocomia aculeata) is a promising crop for biofuel production due to the high concentration of its fruit oil, but the harvest date is an issue to be better understood so it could be cultivated on an industrial scale. The aim of this study was to use the colorimetric properties of the macaw palm fruits to develop a neural network classifier to determine the ideal moment for harvesting, based on the oil content of the fruit mesocarp. During nine weeks of maturation were sampled 900 fruits of macaw palm fruits and the colorimetric properties of the RGB, HSI and CIELab color models were used to classify the fruits into immature and mature fruits. Kappa index and the overall accuracy values were used to access the classifier performance. The classifiers based on RGB parameters and on hue were considered equivalents having a Kappa index of 0.901 and 0.942, respectively, indicating the 59th week of maturation as the ideal time to harvest with the highest oil content.Associação Brasileira de Engenharia Agrícola2018-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162018000400634Engenharia Agrícola v.38 n.4 2018reponame:Engenharia Agrícolainstname:Associação Brasileira de Engenharia Agrícola (SBEA)instacron:SBEA10.1590/1809-4430-eng.agric.v38n4p634-641/2018info:eu-repo/semantics/openAccessCosta,Anderson G.Pinto,Francisco de A. de C.Motoike,Sérgio Y.Braga Júnior,Roberto A.Gracia,Luis M. Navaseng2018-08-20T00:00:00Zoai:scielo:S0100-69162018000400634Revistahttp://www.engenhariaagricola.org.br/ORGhttps://old.scielo.br/oai/scielo-oai.phprevistasbea@sbea.org.br||sbea@sbea.org.br1809-44300100-6916opendoar:2018-08-20T00:00Engenharia Agrícola - Associação Brasileira de Engenharia Agrícola (SBEA)false |
dc.title.none.fl_str_mv |
CLASSIFICATION OF MACAW PALM FRUITS FROM COLORIMETRIC PROPERTIES FOR DETERMINING THE HARVEST MOMENT |
title |
CLASSIFICATION OF MACAW PALM FRUITS FROM COLORIMETRIC PROPERTIES FOR DETERMINING THE HARVEST MOMENT |
spellingShingle |
CLASSIFICATION OF MACAW PALM FRUITS FROM COLORIMETRIC PROPERTIES FOR DETERMINING THE HARVEST MOMENT Costa,Anderson G. digital images maturation neural networks oil content |
title_short |
CLASSIFICATION OF MACAW PALM FRUITS FROM COLORIMETRIC PROPERTIES FOR DETERMINING THE HARVEST MOMENT |
title_full |
CLASSIFICATION OF MACAW PALM FRUITS FROM COLORIMETRIC PROPERTIES FOR DETERMINING THE HARVEST MOMENT |
title_fullStr |
CLASSIFICATION OF MACAW PALM FRUITS FROM COLORIMETRIC PROPERTIES FOR DETERMINING THE HARVEST MOMENT |
title_full_unstemmed |
CLASSIFICATION OF MACAW PALM FRUITS FROM COLORIMETRIC PROPERTIES FOR DETERMINING THE HARVEST MOMENT |
title_sort |
CLASSIFICATION OF MACAW PALM FRUITS FROM COLORIMETRIC PROPERTIES FOR DETERMINING THE HARVEST MOMENT |
author |
Costa,Anderson G. |
author_facet |
Costa,Anderson G. Pinto,Francisco de A. de C. Motoike,Sérgio Y. Braga Júnior,Roberto A. Gracia,Luis M. Navas |
author_role |
author |
author2 |
Pinto,Francisco de A. de C. Motoike,Sérgio Y. Braga Júnior,Roberto A. Gracia,Luis M. Navas |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Costa,Anderson G. Pinto,Francisco de A. de C. Motoike,Sérgio Y. Braga Júnior,Roberto A. Gracia,Luis M. Navas |
dc.subject.por.fl_str_mv |
digital images maturation neural networks oil content |
topic |
digital images maturation neural networks oil content |
description |
ABSTRACT Macaw palm (Acrocomia aculeata) is a promising crop for biofuel production due to the high concentration of its fruit oil, but the harvest date is an issue to be better understood so it could be cultivated on an industrial scale. The aim of this study was to use the colorimetric properties of the macaw palm fruits to develop a neural network classifier to determine the ideal moment for harvesting, based on the oil content of the fruit mesocarp. During nine weeks of maturation were sampled 900 fruits of macaw palm fruits and the colorimetric properties of the RGB, HSI and CIELab color models were used to classify the fruits into immature and mature fruits. Kappa index and the overall accuracy values were used to access the classifier performance. The classifiers based on RGB parameters and on hue were considered equivalents having a Kappa index of 0.901 and 0.942, respectively, indicating the 59th week of maturation as the ideal time to harvest with the highest oil content. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-08-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162018000400634 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162018000400634 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1809-4430-eng.agric.v38n4p634-641/2018 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Engenharia Agrícola |
publisher.none.fl_str_mv |
Associação Brasileira de Engenharia Agrícola |
dc.source.none.fl_str_mv |
Engenharia Agrícola v.38 n.4 2018 reponame:Engenharia Agrícola instname:Associação Brasileira de Engenharia Agrícola (SBEA) instacron:SBEA |
instname_str |
Associação Brasileira de Engenharia Agrícola (SBEA) |
instacron_str |
SBEA |
institution |
SBEA |
reponame_str |
Engenharia Agrícola |
collection |
Engenharia Agrícola |
repository.name.fl_str_mv |
Engenharia Agrícola - Associação Brasileira de Engenharia Agrícola (SBEA) |
repository.mail.fl_str_mv |
revistasbea@sbea.org.br||sbea@sbea.org.br |
_version_ |
1752126273996455936 |