CLASSIFICATION OF MACAW PALM FRUITS FROM COLORIMETRIC PROPERTIES FOR DETERMINING THE HARVEST MOMENT

Detalhes bibliográficos
Autor(a) principal: Costa,Anderson G.
Data de Publicação: 2018
Outros Autores: Pinto,Francisco de A. de C., Motoike,Sérgio Y., Braga Júnior,Roberto A., Gracia,Luis M. Navas
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Engenharia Agrícola
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162018000400634
Resumo: ABSTRACT Macaw palm (Acrocomia aculeata) is a promising crop for biofuel production due to the high concentration of its fruit oil, but the harvest date is an issue to be better understood so it could be cultivated on an industrial scale. The aim of this study was to use the colorimetric properties of the macaw palm fruits to develop a neural network classifier to determine the ideal moment for harvesting, based on the oil content of the fruit mesocarp. During nine weeks of maturation were sampled 900 fruits of macaw palm fruits and the colorimetric properties of the RGB, HSI and CIELab color models were used to classify the fruits into immature and mature fruits. Kappa index and the overall accuracy values were used to access the classifier performance. The classifiers based on RGB parameters and on hue were considered equivalents having a Kappa index of 0.901 and 0.942, respectively, indicating the 59th week of maturation as the ideal time to harvest with the highest oil content.
id SBEA-1_4730b7fe8796340299d13576a5c9d91b
oai_identifier_str oai:scielo:S0100-69162018000400634
network_acronym_str SBEA-1
network_name_str Engenharia Agrícola
repository_id_str
spelling CLASSIFICATION OF MACAW PALM FRUITS FROM COLORIMETRIC PROPERTIES FOR DETERMINING THE HARVEST MOMENTdigital imagesmaturationneural networksoil contentABSTRACT Macaw palm (Acrocomia aculeata) is a promising crop for biofuel production due to the high concentration of its fruit oil, but the harvest date is an issue to be better understood so it could be cultivated on an industrial scale. The aim of this study was to use the colorimetric properties of the macaw palm fruits to develop a neural network classifier to determine the ideal moment for harvesting, based on the oil content of the fruit mesocarp. During nine weeks of maturation were sampled 900 fruits of macaw palm fruits and the colorimetric properties of the RGB, HSI and CIELab color models were used to classify the fruits into immature and mature fruits. Kappa index and the overall accuracy values were used to access the classifier performance. The classifiers based on RGB parameters and on hue were considered equivalents having a Kappa index of 0.901 and 0.942, respectively, indicating the 59th week of maturation as the ideal time to harvest with the highest oil content.Associação Brasileira de Engenharia Agrícola2018-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162018000400634Engenharia Agrícola v.38 n.4 2018reponame:Engenharia Agrícolainstname:Associação Brasileira de Engenharia Agrícola (SBEA)instacron:SBEA10.1590/1809-4430-eng.agric.v38n4p634-641/2018info:eu-repo/semantics/openAccessCosta,Anderson G.Pinto,Francisco de A. de C.Motoike,Sérgio Y.Braga Júnior,Roberto A.Gracia,Luis M. Navaseng2018-08-20T00:00:00Zoai:scielo:S0100-69162018000400634Revistahttp://www.engenhariaagricola.org.br/ORGhttps://old.scielo.br/oai/scielo-oai.phprevistasbea@sbea.org.br||sbea@sbea.org.br1809-44300100-6916opendoar:2018-08-20T00:00Engenharia Agrícola - Associação Brasileira de Engenharia Agrícola (SBEA)false
dc.title.none.fl_str_mv CLASSIFICATION OF MACAW PALM FRUITS FROM COLORIMETRIC PROPERTIES FOR DETERMINING THE HARVEST MOMENT
title CLASSIFICATION OF MACAW PALM FRUITS FROM COLORIMETRIC PROPERTIES FOR DETERMINING THE HARVEST MOMENT
spellingShingle CLASSIFICATION OF MACAW PALM FRUITS FROM COLORIMETRIC PROPERTIES FOR DETERMINING THE HARVEST MOMENT
Costa,Anderson G.
digital images
maturation
neural networks
oil content
title_short CLASSIFICATION OF MACAW PALM FRUITS FROM COLORIMETRIC PROPERTIES FOR DETERMINING THE HARVEST MOMENT
title_full CLASSIFICATION OF MACAW PALM FRUITS FROM COLORIMETRIC PROPERTIES FOR DETERMINING THE HARVEST MOMENT
title_fullStr CLASSIFICATION OF MACAW PALM FRUITS FROM COLORIMETRIC PROPERTIES FOR DETERMINING THE HARVEST MOMENT
title_full_unstemmed CLASSIFICATION OF MACAW PALM FRUITS FROM COLORIMETRIC PROPERTIES FOR DETERMINING THE HARVEST MOMENT
title_sort CLASSIFICATION OF MACAW PALM FRUITS FROM COLORIMETRIC PROPERTIES FOR DETERMINING THE HARVEST MOMENT
author Costa,Anderson G.
author_facet Costa,Anderson G.
Pinto,Francisco de A. de C.
Motoike,Sérgio Y.
Braga Júnior,Roberto A.
Gracia,Luis M. Navas
author_role author
author2 Pinto,Francisco de A. de C.
Motoike,Sérgio Y.
Braga Júnior,Roberto A.
Gracia,Luis M. Navas
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Costa,Anderson G.
Pinto,Francisco de A. de C.
Motoike,Sérgio Y.
Braga Júnior,Roberto A.
Gracia,Luis M. Navas
dc.subject.por.fl_str_mv digital images
maturation
neural networks
oil content
topic digital images
maturation
neural networks
oil content
description ABSTRACT Macaw palm (Acrocomia aculeata) is a promising crop for biofuel production due to the high concentration of its fruit oil, but the harvest date is an issue to be better understood so it could be cultivated on an industrial scale. The aim of this study was to use the colorimetric properties of the macaw palm fruits to develop a neural network classifier to determine the ideal moment for harvesting, based on the oil content of the fruit mesocarp. During nine weeks of maturation were sampled 900 fruits of macaw palm fruits and the colorimetric properties of the RGB, HSI and CIELab color models were used to classify the fruits into immature and mature fruits. Kappa index and the overall accuracy values were used to access the classifier performance. The classifiers based on RGB parameters and on hue were considered equivalents having a Kappa index of 0.901 and 0.942, respectively, indicating the 59th week of maturation as the ideal time to harvest with the highest oil content.
publishDate 2018
dc.date.none.fl_str_mv 2018-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162018000400634
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162018000400634
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1809-4430-eng.agric.v38n4p634-641/2018
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Engenharia Agrícola
publisher.none.fl_str_mv Associação Brasileira de Engenharia Agrícola
dc.source.none.fl_str_mv Engenharia Agrícola v.38 n.4 2018
reponame:Engenharia Agrícola
instname:Associação Brasileira de Engenharia Agrícola (SBEA)
instacron:SBEA
instname_str Associação Brasileira de Engenharia Agrícola (SBEA)
instacron_str SBEA
institution SBEA
reponame_str Engenharia Agrícola
collection Engenharia Agrícola
repository.name.fl_str_mv Engenharia Agrícola - Associação Brasileira de Engenharia Agrícola (SBEA)
repository.mail.fl_str_mv revistasbea@sbea.org.br||sbea@sbea.org.br
_version_ 1752126273996455936