Classification of macaw palm fruits from colorimetric properties for determining the harvest moment

Detalhes bibliográficos
Autor(a) principal: Pinto, Francisco de A. de C.
Data de Publicação: 2018
Outros Autores: Motoike, Sérgio Y., Braga Júnior, Roberto A., Costa, Anderson G., Gracia, Luis M. Navas
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: http://dx.doi.org/10.1590/1809-4430-eng.agric.v38n4p634-641/2018
http://www.locus.ufv.br/handle/123456789/25481
Resumo: Macaw palm (Acrocomia aculeata) is a promising crop for biofuel production due to the high concentration of its fruit oil, but the harvest date is an issue to be better understood so it could be cultivated on an industrial scale. The aim of this study was to use the colorimetric properties of the macaw palm fruits to develop a neural network classifier to determine the ideal moment for harvesting, based on the oil content of the fruit mesocarp. During nine weeks of maturation were sampled 900 fruits of macaw palm fruits and the colorimetric properties of the RGB, HSI and CIELab color models were used to classify the fruits into immature and mature fruits. Kappa index and the overall accuracy values were used to access the classifier performance. The classifiers based on RGB parameters and on hue were considered equivalents having a Kappa index of 0.901 and 0.942, respectively, indicating the 59th week of maturation as the ideal time to harvest with the highest oil content.
id UFV_1f4bc6c35b8b5cf806882b97e4e204f6
oai_identifier_str oai:locus.ufv.br:123456789/25481
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Pinto, Francisco de A. de C.Motoike, Sérgio Y.Braga Júnior, Roberto A.Costa, Anderson G.Gracia, Luis M. Navas2019-05-24T13:08:14Z2019-05-24T13:08:14Z2018-071809-4430http://dx.doi.org/10.1590/1809-4430-eng.agric.v38n4p634-641/2018http://www.locus.ufv.br/handle/123456789/25481Macaw palm (Acrocomia aculeata) is a promising crop for biofuel production due to the high concentration of its fruit oil, but the harvest date is an issue to be better understood so it could be cultivated on an industrial scale. The aim of this study was to use the colorimetric properties of the macaw palm fruits to develop a neural network classifier to determine the ideal moment for harvesting, based on the oil content of the fruit mesocarp. During nine weeks of maturation were sampled 900 fruits of macaw palm fruits and the colorimetric properties of the RGB, HSI and CIELab color models were used to classify the fruits into immature and mature fruits. Kappa index and the overall accuracy values were used to access the classifier performance. The classifiers based on RGB parameters and on hue were considered equivalents having a Kappa index of 0.901 and 0.942, respectively, indicating the 59th week of maturation as the ideal time to harvest with the highest oil content.engEngenharia Agrícolav. 38, n. 04, p. 634-641, jul./ ago. 2018Digital imagesMaturationNeural networksOil contentClassification of macaw palm fruits from colorimetric properties for determining the harvest momentinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdfTexto completoapplication/pdf397792https://locus.ufv.br//bitstream/123456789/25481/1/artigo.pdfb39d395e34a7787218927b324d83c6acMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/25481/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/254812019-05-24 10:11:53.199oai:locus.ufv.br:123456789/25481Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452019-05-24T13:11:53LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv Classification of macaw palm fruits from colorimetric properties for determining the harvest moment
title Classification of macaw palm fruits from colorimetric properties for determining the harvest moment
spellingShingle Classification of macaw palm fruits from colorimetric properties for determining the harvest moment
Pinto, Francisco de A. de C.
Digital images
Maturation
Neural networks
Oil content
title_short Classification of macaw palm fruits from colorimetric properties for determining the harvest moment
title_full Classification of macaw palm fruits from colorimetric properties for determining the harvest moment
title_fullStr Classification of macaw palm fruits from colorimetric properties for determining the harvest moment
title_full_unstemmed Classification of macaw palm fruits from colorimetric properties for determining the harvest moment
title_sort Classification of macaw palm fruits from colorimetric properties for determining the harvest moment
author Pinto, Francisco de A. de C.
author_facet Pinto, Francisco de A. de C.
Motoike, Sérgio Y.
Braga Júnior, Roberto A.
Costa, Anderson G.
Gracia, Luis M. Navas
author_role author
author2 Motoike, Sérgio Y.
Braga Júnior, Roberto A.
Costa, Anderson G.
Gracia, Luis M. Navas
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Pinto, Francisco de A. de C.
Motoike, Sérgio Y.
Braga Júnior, Roberto A.
Costa, Anderson G.
Gracia, Luis M. Navas
dc.subject.pt-BR.fl_str_mv Digital images
Maturation
Neural networks
Oil content
topic Digital images
Maturation
Neural networks
Oil content
description Macaw palm (Acrocomia aculeata) is a promising crop for biofuel production due to the high concentration of its fruit oil, but the harvest date is an issue to be better understood so it could be cultivated on an industrial scale. The aim of this study was to use the colorimetric properties of the macaw palm fruits to develop a neural network classifier to determine the ideal moment for harvesting, based on the oil content of the fruit mesocarp. During nine weeks of maturation were sampled 900 fruits of macaw palm fruits and the colorimetric properties of the RGB, HSI and CIELab color models were used to classify the fruits into immature and mature fruits. Kappa index and the overall accuracy values were used to access the classifier performance. The classifiers based on RGB parameters and on hue were considered equivalents having a Kappa index of 0.901 and 0.942, respectively, indicating the 59th week of maturation as the ideal time to harvest with the highest oil content.
publishDate 2018
dc.date.issued.fl_str_mv 2018-07
dc.date.accessioned.fl_str_mv 2019-05-24T13:08:14Z
dc.date.available.fl_str_mv 2019-05-24T13:08:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1590/1809-4430-eng.agric.v38n4p634-641/2018
http://www.locus.ufv.br/handle/123456789/25481
dc.identifier.issn.none.fl_str_mv 1809-4430
identifier_str_mv 1809-4430
url http://dx.doi.org/10.1590/1809-4430-eng.agric.v38n4p634-641/2018
http://www.locus.ufv.br/handle/123456789/25481
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv v. 38, n. 04, p. 634-641, jul./ ago. 2018
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Engenharia Agrícola
publisher.none.fl_str_mv Engenharia Agrícola
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/25481/1/artigo.pdf
https://locus.ufv.br//bitstream/123456789/25481/2/license.txt
bitstream.checksum.fl_str_mv b39d395e34a7787218927b324d83c6ac
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801212884906147840