Wavelet multiresolution analysis and dyadic scalogram for detection of epileptiform paroxysms in electroencephalographic signals

Detalhes bibliográficos
Autor(a) principal: Malaver,Wilmer Johan Lobato
Data de Publicação: 2017
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Research on Biomedical Engineering (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402017000300195
Resumo: Abstract Introduction Early detection of epilepsy by the review of large electroencephalographic (EEG) recordings is very stressful, time-consuming, and subjective for neurologists. Several automatic seizure detection systems have been proposed in the literature to solve this problem. Methods This study proposes two complementary wavelet-based approaches for detecting epileptiform paroxysms in EEG signals. First methodology applied the wavelet multiresolution analysis (MRA) to filter non-epileptiform activity in long-term EEG. Second methodology used the wavelet dyadic scalogram to analyze which scales were related to the epileptiform paroxysms. For tests, 65 wavelet functions were selected between daubechies, biorthogonal, symlets, reverse biorthogonal and coiflet wavelet families in order to evaluate their performance. Results For MRA, it was noted a better performance by using the db4 function, by reaching 48.30% of energy with 8 wavelet coefficients, 0.717658 of correlation and 36.799 of root mean square error (RMSE). For wavelet dyadic scalograms, were chosen bior3.9 and rbio1.5 functions, by reaching 77.98% of sensitivity, 94.08% of specificity, 87.87% of efficiency and 0.9613 of area under the curve (AUC value) by using bior3.9. Conclusion The presented approaches are highly complementary for a whole automatic seizure detection system by using the MRA as pre-processing stage to filter non-epileptiform activity, and wavelet dyadic scalogram for extracting desired features from filtered EEG signals.
id SBEB-1_9fc2b8a11b8828016217074659014ec4
oai_identifier_str oai:scielo:S2446-47402017000300195
network_acronym_str SBEB-1
network_name_str Research on Biomedical Engineering (Online)
repository_id_str
spelling Wavelet multiresolution analysis and dyadic scalogram for detection of epileptiform paroxysms in electroencephalographic signalsEpilepsyEEG signalWavelet multiresolution analysisWavelet dyadic scalogramArtificial neural networkAbstract Introduction Early detection of epilepsy by the review of large electroencephalographic (EEG) recordings is very stressful, time-consuming, and subjective for neurologists. Several automatic seizure detection systems have been proposed in the literature to solve this problem. Methods This study proposes two complementary wavelet-based approaches for detecting epileptiform paroxysms in EEG signals. First methodology applied the wavelet multiresolution analysis (MRA) to filter non-epileptiform activity in long-term EEG. Second methodology used the wavelet dyadic scalogram to analyze which scales were related to the epileptiform paroxysms. For tests, 65 wavelet functions were selected between daubechies, biorthogonal, symlets, reverse biorthogonal and coiflet wavelet families in order to evaluate their performance. Results For MRA, it was noted a better performance by using the db4 function, by reaching 48.30% of energy with 8 wavelet coefficients, 0.717658 of correlation and 36.799 of root mean square error (RMSE). For wavelet dyadic scalograms, were chosen bior3.9 and rbio1.5 functions, by reaching 77.98% of sensitivity, 94.08% of specificity, 87.87% of efficiency and 0.9613 of area under the curve (AUC value) by using bior3.9. Conclusion The presented approaches are highly complementary for a whole automatic seizure detection system by using the MRA as pre-processing stage to filter non-epileptiform activity, and wavelet dyadic scalogram for extracting desired features from filtered EEG signals.Sociedade Brasileira de Engenharia Biomédica2017-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402017000300195Research on Biomedical Engineering v.33 n.3 2017reponame:Research on Biomedical Engineering (Online)instname:Sociedade Brasileira de Engenharia Biomédica (SBEB)instacron:SBEB10.1590/2446-4740.08616info:eu-repo/semantics/openAccessMalaver,Wilmer Johan Lobatoeng2018-08-02T00:00:00Zoai:scielo:S2446-47402017000300195Revistahttp://www.rbejournal.org/https://old.scielo.br/oai/scielo-oai.php||rbe@rbejournal.org2446-47402446-4732opendoar:2018-08-02T00:00Research on Biomedical Engineering (Online) - Sociedade Brasileira de Engenharia Biomédica (SBEB)false
dc.title.none.fl_str_mv Wavelet multiresolution analysis and dyadic scalogram for detection of epileptiform paroxysms in electroencephalographic signals
title Wavelet multiresolution analysis and dyadic scalogram for detection of epileptiform paroxysms in electroencephalographic signals
spellingShingle Wavelet multiresolution analysis and dyadic scalogram for detection of epileptiform paroxysms in electroencephalographic signals
Malaver,Wilmer Johan Lobato
Epilepsy
EEG signal
Wavelet multiresolution analysis
Wavelet dyadic scalogram
Artificial neural network
title_short Wavelet multiresolution analysis and dyadic scalogram for detection of epileptiform paroxysms in electroencephalographic signals
title_full Wavelet multiresolution analysis and dyadic scalogram for detection of epileptiform paroxysms in electroencephalographic signals
title_fullStr Wavelet multiresolution analysis and dyadic scalogram for detection of epileptiform paroxysms in electroencephalographic signals
title_full_unstemmed Wavelet multiresolution analysis and dyadic scalogram for detection of epileptiform paroxysms in electroencephalographic signals
title_sort Wavelet multiresolution analysis and dyadic scalogram for detection of epileptiform paroxysms in electroencephalographic signals
author Malaver,Wilmer Johan Lobato
author_facet Malaver,Wilmer Johan Lobato
author_role author
dc.contributor.author.fl_str_mv Malaver,Wilmer Johan Lobato
dc.subject.por.fl_str_mv Epilepsy
EEG signal
Wavelet multiresolution analysis
Wavelet dyadic scalogram
Artificial neural network
topic Epilepsy
EEG signal
Wavelet multiresolution analysis
Wavelet dyadic scalogram
Artificial neural network
description Abstract Introduction Early detection of epilepsy by the review of large electroencephalographic (EEG) recordings is very stressful, time-consuming, and subjective for neurologists. Several automatic seizure detection systems have been proposed in the literature to solve this problem. Methods This study proposes two complementary wavelet-based approaches for detecting epileptiform paroxysms in EEG signals. First methodology applied the wavelet multiresolution analysis (MRA) to filter non-epileptiform activity in long-term EEG. Second methodology used the wavelet dyadic scalogram to analyze which scales were related to the epileptiform paroxysms. For tests, 65 wavelet functions were selected between daubechies, biorthogonal, symlets, reverse biorthogonal and coiflet wavelet families in order to evaluate their performance. Results For MRA, it was noted a better performance by using the db4 function, by reaching 48.30% of energy with 8 wavelet coefficients, 0.717658 of correlation and 36.799 of root mean square error (RMSE). For wavelet dyadic scalograms, were chosen bior3.9 and rbio1.5 functions, by reaching 77.98% of sensitivity, 94.08% of specificity, 87.87% of efficiency and 0.9613 of area under the curve (AUC value) by using bior3.9. Conclusion The presented approaches are highly complementary for a whole automatic seizure detection system by using the MRA as pre-processing stage to filter non-epileptiform activity, and wavelet dyadic scalogram for extracting desired features from filtered EEG signals.
publishDate 2017
dc.date.none.fl_str_mv 2017-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402017000300195
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402017000300195
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/2446-4740.08616
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Engenharia Biomédica
publisher.none.fl_str_mv Sociedade Brasileira de Engenharia Biomédica
dc.source.none.fl_str_mv Research on Biomedical Engineering v.33 n.3 2017
reponame:Research on Biomedical Engineering (Online)
instname:Sociedade Brasileira de Engenharia Biomédica (SBEB)
instacron:SBEB
instname_str Sociedade Brasileira de Engenharia Biomédica (SBEB)
instacron_str SBEB
institution SBEB
reponame_str Research on Biomedical Engineering (Online)
collection Research on Biomedical Engineering (Online)
repository.name.fl_str_mv Research on Biomedical Engineering (Online) - Sociedade Brasileira de Engenharia Biomédica (SBEB)
repository.mail.fl_str_mv ||rbe@rbejournal.org
_version_ 1752126288679665664