Continuous Wavelet Transform study for normal and ictal eeg signals analysis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Revista de Engenharia Química e Química |
Texto Completo: | https://periodicos.ufv.br/jcec/article/view/15427 |
Resumo: | In this article we propose the use of the continuous wavelet transform to analyze some specific signals acquired via electroencelalogram (EEG). The EEG is a widely used test to analyze the brain electrical activity and, through it, it is possible to detect, in certain frequency bands, if this electrical activity is in accordance with the established norms. To achieve this goal, we will first explain a little about how the EEG works and then use the continuous wavelet transform, through a program written in python language, to analyze the behavior of EEG signals in the time and frequency domains. There are two specific types of signals studied: from healthy people and from people in epileptic seizures, known as ictal signals. Signals from a consolidated database of the University of Bonn were used. The main results were statistical data obtained from the signals and their respective scalograms, in which the difference between the maximum values, mean values, and other parameters of each signal and scalogram were compared. |
id |
UFV-4_e16b334de7a5ac403c989c47cf858976 |
---|---|
oai_identifier_str |
oai:ojs.periodicos.ufv.br:article/15427 |
network_acronym_str |
UFV-4 |
network_name_str |
Revista de Engenharia Química e Química |
repository_id_str |
|
spelling |
Continuous Wavelet Transform study for normal and ictal eeg signals analysis Estudo da Transformada Wavelet Contínua para análise de sinais EEG normais e ictaisEEGContinuous Wavelet TransformSignalScalogramEEGSinalEscalogramaTransformadas Wavelet contínuasIn this article we propose the use of the continuous wavelet transform to analyze some specific signals acquired via electroencelalogram (EEG). The EEG is a widely used test to analyze the brain electrical activity and, through it, it is possible to detect, in certain frequency bands, if this electrical activity is in accordance with the established norms. To achieve this goal, we will first explain a little about how the EEG works and then use the continuous wavelet transform, through a program written in python language, to analyze the behavior of EEG signals in the time and frequency domains. There are two specific types of signals studied: from healthy people and from people in epileptic seizures, known as ictal signals. Signals from a consolidated database of the University of Bonn were used. The main results were statistical data obtained from the signals and their respective scalograms, in which the difference between the maximum values, mean values, and other parameters of each signal and scalogram were compared.Neste artigo propomos o uso da transformada wavelet continua para analisar alguns sinais específicos obtidos via eletroencelalograma (EEG). O EEG é um exame muito utilizado para análise da atividade elétrica cerebral e, através dele, é possível detectar, em determinadas bandas de frequência, se essa atividade elétrica está de acordo com as normas estabelecidas. Para atingir este objetivo, primeiramente explicaremos um pouco sobre o funcionamento do EEG e depois utilizaremos a transformada wavelet contínua, por meio de um programa escrito na linguagem python, para analisar o comportamento de sinais de EEG nos domínios do tempo e da frequência. São dois tipos específicos de sinais estudados: de pessoas saudáveis e de pessoas em crise epiléptica, conhecidos como sinais ictais. Foram utilizados sinais de uma base de dados consolidada da Universidade de Bonn. Os principais resultados foram a obtenção dos dados estatísticos obtidos dos sinais e de seus respectivos escalogramas, em que foram comparados a diferença entre os valores máximos, média de valores e outros parâmetros de cada sinal e escalograma.Universidade Federal de Viçosa - UFV2023-02-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtigo, Manuscrito, Eventosapplication/pdfhttps://periodicos.ufv.br/jcec/article/view/1542710.18540/jcecvl9iss1pp15427-01eThe Journal of Engineering and Exact Sciences; Vol. 9 No. 1 (2023); 15427-01eThe Journal of Engineering and Exact Sciences; Vol. 9 Núm. 1 (2023); 15427-01eThe Journal of Engineering and Exact Sciences; v. 9 n. 1 (2023); 15427-01e2527-1075reponame:Revista de Engenharia Química e Químicainstname:Universidade Federal de Viçosa (UFV)instacron:UFVporhttps://periodicos.ufv.br/jcec/article/view/15427/7834Copyright (c) 2023 The Journal of Engineering and Exact Scienceshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessSilva, Thiago Bastos daCampos, Sílvia Mara da Costa2023-02-24T18:44:16Zoai:ojs.periodicos.ufv.br:article/15427Revistahttp://www.seer.ufv.br/seer/rbeq2/index.php/req2/indexONGhttps://periodicos.ufv.br/jcec/oaijcec.journal@ufv.br||req2@ufv.br2446-94162446-9416opendoar:2023-02-24T18:44:16Revista de Engenharia Química e Química - Universidade Federal de Viçosa (UFV)false |
dc.title.none.fl_str_mv |
Continuous Wavelet Transform study for normal and ictal eeg signals analysis Estudo da Transformada Wavelet Contínua para análise de sinais EEG normais e ictais |
title |
Continuous Wavelet Transform study for normal and ictal eeg signals analysis |
spellingShingle |
Continuous Wavelet Transform study for normal and ictal eeg signals analysis Silva, Thiago Bastos da EEG Continuous Wavelet Transform Signal Scalogram EEG Sinal Escalograma Transformadas Wavelet contínuas |
title_short |
Continuous Wavelet Transform study for normal and ictal eeg signals analysis |
title_full |
Continuous Wavelet Transform study for normal and ictal eeg signals analysis |
title_fullStr |
Continuous Wavelet Transform study for normal and ictal eeg signals analysis |
title_full_unstemmed |
Continuous Wavelet Transform study for normal and ictal eeg signals analysis |
title_sort |
Continuous Wavelet Transform study for normal and ictal eeg signals analysis |
author |
Silva, Thiago Bastos da |
author_facet |
Silva, Thiago Bastos da Campos, Sílvia Mara da Costa |
author_role |
author |
author2 |
Campos, Sílvia Mara da Costa |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Silva, Thiago Bastos da Campos, Sílvia Mara da Costa |
dc.subject.por.fl_str_mv |
EEG Continuous Wavelet Transform Signal Scalogram EEG Sinal Escalograma Transformadas Wavelet contínuas |
topic |
EEG Continuous Wavelet Transform Signal Scalogram EEG Sinal Escalograma Transformadas Wavelet contínuas |
description |
In this article we propose the use of the continuous wavelet transform to analyze some specific signals acquired via electroencelalogram (EEG). The EEG is a widely used test to analyze the brain electrical activity and, through it, it is possible to detect, in certain frequency bands, if this electrical activity is in accordance with the established norms. To achieve this goal, we will first explain a little about how the EEG works and then use the continuous wavelet transform, through a program written in python language, to analyze the behavior of EEG signals in the time and frequency domains. There are two specific types of signals studied: from healthy people and from people in epileptic seizures, known as ictal signals. Signals from a consolidated database of the University of Bonn were used. The main results were statistical data obtained from the signals and their respective scalograms, in which the difference between the maximum values, mean values, and other parameters of each signal and scalogram were compared. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-02-20 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Artigo, Manuscrito, Eventos |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.ufv.br/jcec/article/view/15427 10.18540/jcecvl9iss1pp15427-01e |
url |
https://periodicos.ufv.br/jcec/article/view/15427 |
identifier_str_mv |
10.18540/jcecvl9iss1pp15427-01e |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://periodicos.ufv.br/jcec/article/view/15427/7834 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2023 The Journal of Engineering and Exact Sciences https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2023 The Journal of Engineering and Exact Sciences https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Viçosa - UFV |
publisher.none.fl_str_mv |
Universidade Federal de Viçosa - UFV |
dc.source.none.fl_str_mv |
The Journal of Engineering and Exact Sciences; Vol. 9 No. 1 (2023); 15427-01e The Journal of Engineering and Exact Sciences; Vol. 9 Núm. 1 (2023); 15427-01e The Journal of Engineering and Exact Sciences; v. 9 n. 1 (2023); 15427-01e 2527-1075 reponame:Revista de Engenharia Química e Química instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
Revista de Engenharia Química e Química |
collection |
Revista de Engenharia Química e Química |
repository.name.fl_str_mv |
Revista de Engenharia Química e Química - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
jcec.journal@ufv.br||req2@ufv.br |
_version_ |
1800211186196676608 |