Production of fibrous polymer scaffolds for tissue engineering using an automated solution blow spinning system
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Research on Biomedical Engineering (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402018000300273 |
Resumo: | Abstract Introduction Solution blow spinning (SBS) and airbrushing are two techniques that can be used as alternatives to electrospinning in the production of fibrous scaffolds for tissue engineering (TE). SBS seems particularly interesting due to its versatility, however, it has not been much explored and no automated SBS systems were found in the literature. Therefore, the present work aimed to develop such equipment and compare the results to those found for airbrushing, considering the same set of parameters. Methods A new SBS set up, composed of a specially designed nozzle with automated movement, a syringe pump and a compressor, was used to produce fibrous poly (ε-caprolactone) (PCL) mats. The airbrushed fibers were produced under the same conditions, and samples of both types of mats were imaged using scanning electron microscopy (SEM) to compare them in terms of microstructure and fiber diameter. Results The SBS system was robust and performed well, in terms of movement and fiber deposition. In comparison to airbrushing’s, SBS mats presented different microstructural characteristics (considering the parameters used). Conclusion The biggest advantage over airbrushing may be its versatility and simple automation, which may improve sample reproducibility, especially considering scaled up processes. To further improve this apparatus, a better understanding of how process variables interfere in the microstructure is needed, as well as more sophisticated interface and operation. |
id |
SBEB-1_cb9d0f4d8586f79f3722ae401d7fe67d |
---|---|
oai_identifier_str |
oai:scielo:S2446-47402018000300273 |
network_acronym_str |
SBEB-1 |
network_name_str |
Research on Biomedical Engineering (Online) |
repository_id_str |
|
spelling |
Production of fibrous polymer scaffolds for tissue engineering using an automated solution blow spinning systemFibrous scaffoldsSolution blow spinningAirbrushingAbstract Introduction Solution blow spinning (SBS) and airbrushing are two techniques that can be used as alternatives to electrospinning in the production of fibrous scaffolds for tissue engineering (TE). SBS seems particularly interesting due to its versatility, however, it has not been much explored and no automated SBS systems were found in the literature. Therefore, the present work aimed to develop such equipment and compare the results to those found for airbrushing, considering the same set of parameters. Methods A new SBS set up, composed of a specially designed nozzle with automated movement, a syringe pump and a compressor, was used to produce fibrous poly (ε-caprolactone) (PCL) mats. The airbrushed fibers were produced under the same conditions, and samples of both types of mats were imaged using scanning electron microscopy (SEM) to compare them in terms of microstructure and fiber diameter. Results The SBS system was robust and performed well, in terms of movement and fiber deposition. In comparison to airbrushing’s, SBS mats presented different microstructural characteristics (considering the parameters used). Conclusion The biggest advantage over airbrushing may be its versatility and simple automation, which may improve sample reproducibility, especially considering scaled up processes. To further improve this apparatus, a better understanding of how process variables interfere in the microstructure is needed, as well as more sophisticated interface and operation.Sociedade Brasileira de Engenharia Biomédica2018-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402018000300273Research on Biomedical Engineering v.34 n.3 2018reponame:Research on Biomedical Engineering (Online)instname:Sociedade Brasileira de Engenharia Biomédica (SBEB)instacron:SBEB10.1590/2446-4740.180039info:eu-repo/semantics/openAccessHell,Alessandra ForgattiSimbara,Márcia Mayumi OmiRodrigues,PauloKakazu,Danilo AkioMalmonge,Sônia Mariaeng2018-10-30T00:00:00Zoai:scielo:S2446-47402018000300273Revistahttp://www.rbejournal.org/https://old.scielo.br/oai/scielo-oai.php||rbe@rbejournal.org2446-47402446-4732opendoar:2018-10-30T00:00Research on Biomedical Engineering (Online) - Sociedade Brasileira de Engenharia Biomédica (SBEB)false |
dc.title.none.fl_str_mv |
Production of fibrous polymer scaffolds for tissue engineering using an automated solution blow spinning system |
title |
Production of fibrous polymer scaffolds for tissue engineering using an automated solution blow spinning system |
spellingShingle |
Production of fibrous polymer scaffolds for tissue engineering using an automated solution blow spinning system Hell,Alessandra Forgatti Fibrous scaffolds Solution blow spinning Airbrushing |
title_short |
Production of fibrous polymer scaffolds for tissue engineering using an automated solution blow spinning system |
title_full |
Production of fibrous polymer scaffolds for tissue engineering using an automated solution blow spinning system |
title_fullStr |
Production of fibrous polymer scaffolds for tissue engineering using an automated solution blow spinning system |
title_full_unstemmed |
Production of fibrous polymer scaffolds for tissue engineering using an automated solution blow spinning system |
title_sort |
Production of fibrous polymer scaffolds for tissue engineering using an automated solution blow spinning system |
author |
Hell,Alessandra Forgatti |
author_facet |
Hell,Alessandra Forgatti Simbara,Márcia Mayumi Omi Rodrigues,Paulo Kakazu,Danilo Akio Malmonge,Sônia Maria |
author_role |
author |
author2 |
Simbara,Márcia Mayumi Omi Rodrigues,Paulo Kakazu,Danilo Akio Malmonge,Sônia Maria |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Hell,Alessandra Forgatti Simbara,Márcia Mayumi Omi Rodrigues,Paulo Kakazu,Danilo Akio Malmonge,Sônia Maria |
dc.subject.por.fl_str_mv |
Fibrous scaffolds Solution blow spinning Airbrushing |
topic |
Fibrous scaffolds Solution blow spinning Airbrushing |
description |
Abstract Introduction Solution blow spinning (SBS) and airbrushing are two techniques that can be used as alternatives to electrospinning in the production of fibrous scaffolds for tissue engineering (TE). SBS seems particularly interesting due to its versatility, however, it has not been much explored and no automated SBS systems were found in the literature. Therefore, the present work aimed to develop such equipment and compare the results to those found for airbrushing, considering the same set of parameters. Methods A new SBS set up, composed of a specially designed nozzle with automated movement, a syringe pump and a compressor, was used to produce fibrous poly (ε-caprolactone) (PCL) mats. The airbrushed fibers were produced under the same conditions, and samples of both types of mats were imaged using scanning electron microscopy (SEM) to compare them in terms of microstructure and fiber diameter. Results The SBS system was robust and performed well, in terms of movement and fiber deposition. In comparison to airbrushing’s, SBS mats presented different microstructural characteristics (considering the parameters used). Conclusion The biggest advantage over airbrushing may be its versatility and simple automation, which may improve sample reproducibility, especially considering scaled up processes. To further improve this apparatus, a better understanding of how process variables interfere in the microstructure is needed, as well as more sophisticated interface and operation. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402018000300273 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402018000300273 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/2446-4740.180039 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Engenharia Biomédica |
publisher.none.fl_str_mv |
Sociedade Brasileira de Engenharia Biomédica |
dc.source.none.fl_str_mv |
Research on Biomedical Engineering v.34 n.3 2018 reponame:Research on Biomedical Engineering (Online) instname:Sociedade Brasileira de Engenharia Biomédica (SBEB) instacron:SBEB |
instname_str |
Sociedade Brasileira de Engenharia Biomédica (SBEB) |
instacron_str |
SBEB |
institution |
SBEB |
reponame_str |
Research on Biomedical Engineering (Online) |
collection |
Research on Biomedical Engineering (Online) |
repository.name.fl_str_mv |
Research on Biomedical Engineering (Online) - Sociedade Brasileira de Engenharia Biomédica (SBEB) |
repository.mail.fl_str_mv |
||rbe@rbejournal.org |
_version_ |
1752126288998432768 |