Comparison of the influence of stimuli color on Steady-State Visual Evoked Potentials
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Research on Biomedical Engineering (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402015000300218 |
Resumo: | IntroductionThe main idea of a traditional Steady State Visually Evoked Potentials (SSVEP)-BCI is the activation of commands through gaze control. For this purpose, the retina of the eye is excited by a stimulus at a certain frequency. Several studies have shown effects related to different kind of stimuli, frequencies, window lengths, techniques of feature extraction and even classification. So far, none of the previous studies has performed a comparison of performance of stimuli colors through LED technology. This study addresses precisely this important aspect and would be a great contribution to the topic of SSVEP-BCIs. Additionally, the performance of different colors at different frequencies and the visual comfort were evaluated in each case.MethodsLEDs of four different colors (red, green, blue and yellow) flickering at four distinct frequencies (8, 11, 13 and 15 Hz) were used. Twenty subjects were distributed in two groups performing different protocols. Multivariate Synchronization Index (MSI) was the technique adopted as feature extractor.ResultsThe accuracy was gradually enhanced with the increase of the time window. From our observations, the red color provides, in most frequencies, both highest rates of accuracy and Information Transfer Rate (ITR) for detection of SSVEP.ConclusionAlthough the red color has presented higher ITR, this color was turned in the less comfortable one and can even elicit epileptic responses according to the literature. For this reason, the green color is suggested as the best choice according to the proposed rules. In addition, this color has shown to be safe and accurate for an SSVEP-BCI. |
id |
SBEB-1_cc362652bee155a2467d2111f9e3bb41 |
---|---|
oai_identifier_str |
oai:scielo:S2446-47402015000300218 |
network_acronym_str |
SBEB-1 |
network_name_str |
Research on Biomedical Engineering (Online) |
repository_id_str |
|
spelling |
Comparison of the influence of stimuli color on Steady-State Visual Evoked PotentialsBrain Computer InterfacecolorEEGLEDSSVEPIntroductionThe main idea of a traditional Steady State Visually Evoked Potentials (SSVEP)-BCI is the activation of commands through gaze control. For this purpose, the retina of the eye is excited by a stimulus at a certain frequency. Several studies have shown effects related to different kind of stimuli, frequencies, window lengths, techniques of feature extraction and even classification. So far, none of the previous studies has performed a comparison of performance of stimuli colors through LED technology. This study addresses precisely this important aspect and would be a great contribution to the topic of SSVEP-BCIs. Additionally, the performance of different colors at different frequencies and the visual comfort were evaluated in each case.MethodsLEDs of four different colors (red, green, blue and yellow) flickering at four distinct frequencies (8, 11, 13 and 15 Hz) were used. Twenty subjects were distributed in two groups performing different protocols. Multivariate Synchronization Index (MSI) was the technique adopted as feature extractor.ResultsThe accuracy was gradually enhanced with the increase of the time window. From our observations, the red color provides, in most frequencies, both highest rates of accuracy and Information Transfer Rate (ITR) for detection of SSVEP.ConclusionAlthough the red color has presented higher ITR, this color was turned in the less comfortable one and can even elicit epileptic responses according to the literature. For this reason, the green color is suggested as the best choice according to the proposed rules. In addition, this color has shown to be safe and accurate for an SSVEP-BCI.Sociedade Brasileira de Engenharia Biomédica2015-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402015000300218Research on Biomedical Engineering v.31 n.3 2015reponame:Research on Biomedical Engineering (Online)instname:Sociedade Brasileira de Engenharia Biomédica (SBEB)instacron:SBEB10.1590/2446-4740.0739info:eu-repo/semantics/openAccessTello,Richard Junior Manuel GodinezMüller,Sandra Mara TorresFerreira,AndréBastos,Teodiano Freireeng2015-10-20T00:00:00Zoai:scielo:S2446-47402015000300218Revistahttp://www.rbejournal.org/https://old.scielo.br/oai/scielo-oai.php||rbe@rbejournal.org2446-47402446-4732opendoar:2015-10-20T00:00Research on Biomedical Engineering (Online) - Sociedade Brasileira de Engenharia Biomédica (SBEB)false |
dc.title.none.fl_str_mv |
Comparison of the influence of stimuli color on Steady-State Visual Evoked Potentials |
title |
Comparison of the influence of stimuli color on Steady-State Visual Evoked Potentials |
spellingShingle |
Comparison of the influence of stimuli color on Steady-State Visual Evoked Potentials Tello,Richard Junior Manuel Godinez Brain Computer Interface color EEG LED SSVEP |
title_short |
Comparison of the influence of stimuli color on Steady-State Visual Evoked Potentials |
title_full |
Comparison of the influence of stimuli color on Steady-State Visual Evoked Potentials |
title_fullStr |
Comparison of the influence of stimuli color on Steady-State Visual Evoked Potentials |
title_full_unstemmed |
Comparison of the influence of stimuli color on Steady-State Visual Evoked Potentials |
title_sort |
Comparison of the influence of stimuli color on Steady-State Visual Evoked Potentials |
author |
Tello,Richard Junior Manuel Godinez |
author_facet |
Tello,Richard Junior Manuel Godinez Müller,Sandra Mara Torres Ferreira,André Bastos,Teodiano Freire |
author_role |
author |
author2 |
Müller,Sandra Mara Torres Ferreira,André Bastos,Teodiano Freire |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Tello,Richard Junior Manuel Godinez Müller,Sandra Mara Torres Ferreira,André Bastos,Teodiano Freire |
dc.subject.por.fl_str_mv |
Brain Computer Interface color EEG LED SSVEP |
topic |
Brain Computer Interface color EEG LED SSVEP |
description |
IntroductionThe main idea of a traditional Steady State Visually Evoked Potentials (SSVEP)-BCI is the activation of commands through gaze control. For this purpose, the retina of the eye is excited by a stimulus at a certain frequency. Several studies have shown effects related to different kind of stimuli, frequencies, window lengths, techniques of feature extraction and even classification. So far, none of the previous studies has performed a comparison of performance of stimuli colors through LED technology. This study addresses precisely this important aspect and would be a great contribution to the topic of SSVEP-BCIs. Additionally, the performance of different colors at different frequencies and the visual comfort were evaluated in each case.MethodsLEDs of four different colors (red, green, blue and yellow) flickering at four distinct frequencies (8, 11, 13 and 15 Hz) were used. Twenty subjects were distributed in two groups performing different protocols. Multivariate Synchronization Index (MSI) was the technique adopted as feature extractor.ResultsThe accuracy was gradually enhanced with the increase of the time window. From our observations, the red color provides, in most frequencies, both highest rates of accuracy and Information Transfer Rate (ITR) for detection of SSVEP.ConclusionAlthough the red color has presented higher ITR, this color was turned in the less comfortable one and can even elicit epileptic responses according to the literature. For this reason, the green color is suggested as the best choice according to the proposed rules. In addition, this color has shown to be safe and accurate for an SSVEP-BCI. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402015000300218 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2446-47402015000300218 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/2446-4740.0739 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Engenharia Biomédica |
publisher.none.fl_str_mv |
Sociedade Brasileira de Engenharia Biomédica |
dc.source.none.fl_str_mv |
Research on Biomedical Engineering v.31 n.3 2015 reponame:Research on Biomedical Engineering (Online) instname:Sociedade Brasileira de Engenharia Biomédica (SBEB) instacron:SBEB |
instname_str |
Sociedade Brasileira de Engenharia Biomédica (SBEB) |
instacron_str |
SBEB |
institution |
SBEB |
reponame_str |
Research on Biomedical Engineering (Online) |
collection |
Research on Biomedical Engineering (Online) |
repository.name.fl_str_mv |
Research on Biomedical Engineering (Online) - Sociedade Brasileira de Engenharia Biomédica (SBEB) |
repository.mail.fl_str_mv |
||rbe@rbejournal.org |
_version_ |
1752126288198369280 |