Web-based neuromuscular simulator applied to the teaching of principles of neuroscience

Detalhes bibliográficos
Autor(a) principal: Elias,Leonardo Abdala
Data de Publicação: 2013
Outros Autores: Kohn,André Fabio
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Brasileira de Engenharia Biomédica (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-31512013000300002
Resumo: INTRODUCTION: The learning of core concepts in neuroscience can be reinforced by a hands-on approach, either experimental or computer-based. In this work, we present a web-based multi-scale neuromuscular simulator that is being used as a teaching aid in a campus-wide course on the Principles of Neuroscience. METHODS: The simulator has several built-in individual models based on cat and human biophysics, which are interconnected to represent part of the neuromuscular system that controls leg muscles. Examples of such elements are i) single neurons, representing either motor neurons or interneurons mediating reciprocal, recurrent and Ib inhibition; ii) afferent fibers that can be stimulated to generate spinal reflexes; iii) muscle unit models, generating force and electromyogram; and iv) stochastic inputs, representing the descending volitional motor drive. RESULTS: Several application examples are provided in the present report, ranging from studies of individual neuron responses to the collective action of many motor units controlling muscle force generation. A subset of them was included in an optional homework assignment for Neuroscience and Biomedical Engineering graduate students enrolled in the course cited above at our University. Almost all students rated the simulator as a good or an excellent learning tool, and approximately 90% declared that they would use the simulator in future projects. CONCLUSION: The results allow us to conclude that multi-scale neuromuscular simulator is an effective teaching tool. Special features of this free teaching resource are its direct usability from any browser (http://remoto.leb.usp.br/), its user-friendly graphical user interface (GUI) and the preset demonstrations.
id SBEB-2_d368187dc4074334711a6582672446aa
oai_identifier_str oai:scielo:S1517-31512013000300002
network_acronym_str SBEB-2
network_name_str Revista Brasileira de Engenharia Biomédica (Online)
repository_id_str
spelling Web-based neuromuscular simulator applied to the teaching of principles of neuroscienceBiomedical engineering educationBiological system modelingComputational biologyNeural engineeringINTRODUCTION: The learning of core concepts in neuroscience can be reinforced by a hands-on approach, either experimental or computer-based. In this work, we present a web-based multi-scale neuromuscular simulator that is being used as a teaching aid in a campus-wide course on the Principles of Neuroscience. METHODS: The simulator has several built-in individual models based on cat and human biophysics, which are interconnected to represent part of the neuromuscular system that controls leg muscles. Examples of such elements are i) single neurons, representing either motor neurons or interneurons mediating reciprocal, recurrent and Ib inhibition; ii) afferent fibers that can be stimulated to generate spinal reflexes; iii) muscle unit models, generating force and electromyogram; and iv) stochastic inputs, representing the descending volitional motor drive. RESULTS: Several application examples are provided in the present report, ranging from studies of individual neuron responses to the collective action of many motor units controlling muscle force generation. A subset of them was included in an optional homework assignment for Neuroscience and Biomedical Engineering graduate students enrolled in the course cited above at our University. Almost all students rated the simulator as a good or an excellent learning tool, and approximately 90% declared that they would use the simulator in future projects. CONCLUSION: The results allow us to conclude that multi-scale neuromuscular simulator is an effective teaching tool. Special features of this free teaching resource are its direct usability from any browser (http://remoto.leb.usp.br/), its user-friendly graphical user interface (GUI) and the preset demonstrations.SBEB - Sociedade Brasileira de Engenharia Biomédica2013-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-31512013000300002Revista Brasileira de Engenharia Biomédica v.29 n.3 2013reponame:Revista Brasileira de Engenharia Biomédica (Online)instname:Sociedade Brasileira de Engenharia Biomédica (SBEB)instacron:SBEB10.4322/rbeb.2013.026info:eu-repo/semantics/openAccessElias,Leonardo AbdalaKohn,André Fabioeng2013-10-28T00:00:00Zoai:scielo:S1517-31512013000300002Revistahttp://www.scielo.br/rbebONGhttps://old.scielo.br/oai/scielo-oai.php||rbeb@rbeb.org.br1984-77421517-3151opendoar:2013-10-28T00:00Revista Brasileira de Engenharia Biomédica (Online) - Sociedade Brasileira de Engenharia Biomédica (SBEB)false
dc.title.none.fl_str_mv Web-based neuromuscular simulator applied to the teaching of principles of neuroscience
title Web-based neuromuscular simulator applied to the teaching of principles of neuroscience
spellingShingle Web-based neuromuscular simulator applied to the teaching of principles of neuroscience
Elias,Leonardo Abdala
Biomedical engineering education
Biological system modeling
Computational biology
Neural engineering
title_short Web-based neuromuscular simulator applied to the teaching of principles of neuroscience
title_full Web-based neuromuscular simulator applied to the teaching of principles of neuroscience
title_fullStr Web-based neuromuscular simulator applied to the teaching of principles of neuroscience
title_full_unstemmed Web-based neuromuscular simulator applied to the teaching of principles of neuroscience
title_sort Web-based neuromuscular simulator applied to the teaching of principles of neuroscience
author Elias,Leonardo Abdala
author_facet Elias,Leonardo Abdala
Kohn,André Fabio
author_role author
author2 Kohn,André Fabio
author2_role author
dc.contributor.author.fl_str_mv Elias,Leonardo Abdala
Kohn,André Fabio
dc.subject.por.fl_str_mv Biomedical engineering education
Biological system modeling
Computational biology
Neural engineering
topic Biomedical engineering education
Biological system modeling
Computational biology
Neural engineering
description INTRODUCTION: The learning of core concepts in neuroscience can be reinforced by a hands-on approach, either experimental or computer-based. In this work, we present a web-based multi-scale neuromuscular simulator that is being used as a teaching aid in a campus-wide course on the Principles of Neuroscience. METHODS: The simulator has several built-in individual models based on cat and human biophysics, which are interconnected to represent part of the neuromuscular system that controls leg muscles. Examples of such elements are i) single neurons, representing either motor neurons or interneurons mediating reciprocal, recurrent and Ib inhibition; ii) afferent fibers that can be stimulated to generate spinal reflexes; iii) muscle unit models, generating force and electromyogram; and iv) stochastic inputs, representing the descending volitional motor drive. RESULTS: Several application examples are provided in the present report, ranging from studies of individual neuron responses to the collective action of many motor units controlling muscle force generation. A subset of them was included in an optional homework assignment for Neuroscience and Biomedical Engineering graduate students enrolled in the course cited above at our University. Almost all students rated the simulator as a good or an excellent learning tool, and approximately 90% declared that they would use the simulator in future projects. CONCLUSION: The results allow us to conclude that multi-scale neuromuscular simulator is an effective teaching tool. Special features of this free teaching resource are its direct usability from any browser (http://remoto.leb.usp.br/), its user-friendly graphical user interface (GUI) and the preset demonstrations.
publishDate 2013
dc.date.none.fl_str_mv 2013-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-31512013000300002
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-31512013000300002
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.4322/rbeb.2013.026
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv SBEB - Sociedade Brasileira de Engenharia Biomédica
publisher.none.fl_str_mv SBEB - Sociedade Brasileira de Engenharia Biomédica
dc.source.none.fl_str_mv Revista Brasileira de Engenharia Biomédica v.29 n.3 2013
reponame:Revista Brasileira de Engenharia Biomédica (Online)
instname:Sociedade Brasileira de Engenharia Biomédica (SBEB)
instacron:SBEB
instname_str Sociedade Brasileira de Engenharia Biomédica (SBEB)
instacron_str SBEB
institution SBEB
reponame_str Revista Brasileira de Engenharia Biomédica (Online)
collection Revista Brasileira de Engenharia Biomédica (Online)
repository.name.fl_str_mv Revista Brasileira de Engenharia Biomédica (Online) - Sociedade Brasileira de Engenharia Biomédica (SBEB)
repository.mail.fl_str_mv ||rbeb@rbeb.org.br
_version_ 1754820915052412928