Adaptation of the GTERP Mathematics Teaching-Learning-Assessment Methodology to teach Differential and Integral Calculus through Problem Solving
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Revista de Educação Matemática (Online) |
Texto Completo: | https://www.revistasbemsp.com.br/index.php/REMat-SP/article/view/187 |
Resumo: | The Methodology of Mathematics Teaching-Learning-Assessment through Problem Solving is a didactic strategy in which the student takes up an active role and is more committed to his / her learning, while the teacher is the mediator of the teaching and learning process. In Brazil, the Working and Study Group on Problem Solving (GTERP) is a research group developing school-environment related research and, for that, there is a script guiding teachers on how the above-mentioned methodology should be implemented. Such script’s third version consists of ten activities and can be employed at any level of education. However, when adopted to teach Differential and Integral Calculus contents in Higher Education, some adjustments had to be made to enable teaching through problem solving as well as fulfilling the course’s teaching plan while respecting the academic calendar. This work is a part of a doctoral research that aimed to develop strategies to insert the Problem-Solving Teaching-Learning-Assessment Methodology to teach contents of Differential and Integral Calculus in the regular class schedule. The objective of this text is to exemplify how, in practice, the Problem-Solving Methodology was implemented based on the GTERP’s script. To do so, we will present and report on an innovative proposal to address a formal limit definition. Finally, we will compare the GTERP’s script against what was actually applied. The adaptations on such script met our needs and we believe to have preserved the essence of what a class aiming to teach through Problem Solving should be. |
id |
SBEM_d975cbc77728ba138392cdb3d858b578 |
---|---|
oai_identifier_str |
oai:ojs2.www.revistasbemsp.com.br:article/187 |
network_acronym_str |
SBEM |
network_name_str |
Revista de Educação Matemática (Online) |
repository_id_str |
|
spelling |
Adaptation of the GTERP Mathematics Teaching-Learning-Assessment Methodology to teach Differential and Integral Calculus through Problem SolvingAdaptación en el guión de la Metodología GTERP de Enseñanza-Aprendizaje-Evaluación para enseñar el Cálculo Diferencial e Integral a través de la Resolución de Problemas Adaptação no roteiro da Metodologia de Ensino-Aprendizagem-Avaliação de Matemática do GTERP para ensinar Cálculo Diferencial e Integral através da Resolução de ProblemasMetodologia de Resolução de ProblemasEnsino de CálculoLimite por definiçãoMetodología de resolución de problemasEnseñanza de CálculoLímite por definiciónProblem Solving MethodologyTeaching CalculusLimit by definitionThe Methodology of Mathematics Teaching-Learning-Assessment through Problem Solving is a didactic strategy in which the student takes up an active role and is more committed to his / her learning, while the teacher is the mediator of the teaching and learning process. In Brazil, the Working and Study Group on Problem Solving (GTERP) is a research group developing school-environment related research and, for that, there is a script guiding teachers on how the above-mentioned methodology should be implemented. Such script’s third version consists of ten activities and can be employed at any level of education. However, when adopted to teach Differential and Integral Calculus contents in Higher Education, some adjustments had to be made to enable teaching through problem solving as well as fulfilling the course’s teaching plan while respecting the academic calendar. This work is a part of a doctoral research that aimed to develop strategies to insert the Problem-Solving Teaching-Learning-Assessment Methodology to teach contents of Differential and Integral Calculus in the regular class schedule. The objective of this text is to exemplify how, in practice, the Problem-Solving Methodology was implemented based on the GTERP’s script. To do so, we will present and report on an innovative proposal to address a formal limit definition. Finally, we will compare the GTERP’s script against what was actually applied. The adaptations on such script met our needs and we believe to have preserved the essence of what a class aiming to teach through Problem Solving should be.La Metodología de Enseñanza-Aprendizaje-Evaluación de Matemática a través de la Resolución de Problemas es una estrategia didáctica en la que el estudiante asume un papel activo y más comprometido con su aprendizaje y el profesor lo de mediador del proceso de enseñanza y aprendizaje. En Brasil, el Grupo de Trabajos y Estudio en Resolución de Problemas (GTERP) es un grupo de investigación activo a desarrollar investigaciones que alcancen el ambiente escolar y, para ello, sus integrantes acostumbran utilizar un guión que orienta como un profesor que desea implementar la estrategia metodología de enseñanza-aprendizaje-evaluación a través de la resolución de problemas puede conducir sus clases. La tercera versión de este itinerario está constituida por diez actividades y puede ser utilizada en cualquier nivel de enseñanza. Sin embargo, al adoptar este itinerario para enseñar contenidos de Cálculo Diferencial e Integral en la Enseñanza Superior, sentimos la necesidad de realizar algunas adecuaciones para que fuera posible enseñar a través de la resolución de problemas y cumplir el plan de enseñanza de la disciplina respetando el calendario académico. Este trabajo es un recorte de una investigación de doctorado que pretendía desarrollar estrategias para insertar la metodología de enseñanza-aprendizaje-evaluación a través de la Resolución de Problemas de Matemática para enseñar contenidos de Cálculo Diferencial e Integral en los horarios regulares de clase. El objetivo de este texto es ejemplificar cómo, en la práctica, la metodología de resolución de problemas fue implementada a partir de las orientaciones del guión del GTERP. Para ello, presentaremos e informaremos la tarea propuesta para abordar la definición formal de límite. Por último, estableceremos un comparativo del guión del GTERP con el que de hecho se aplicó. Las adecuaciones en este itinerario satisfacen nuestras necesidades y creemos que preservaron la esencia de lo que viene a ser una clase cuyo objetivo sea enseñar a través de la Resolución de Problemas.A Metodologia de Ensino-Aprendizagem-Avaliação de Matemática através da Resolução de Problemas é uma estratégia didática em que o estudante assume um papel mais ativo e comprometido com a sua aprendizagem e, o professor, de mediador dos processos de ensino e de aprendizagem. No Brasil, o Grupo de Trabalhos e Estudo em Resolução de Problemas (GTERP) é atuante e desenvolve pesquisas que visam atingir o ambiente escolar e, para tanto, seus integrantes costumam utilizar um roteiro com orientações referentes a forma de como o professor pode implementar tal metodologia. A terceira versão deste roteiro é constituída por dez atividades e pode ser utilizada em qualquer nível de ensino. No entanto, ao adotar este esse roteiro para ensinar conteúdos de Cálculo Diferencial e Integral no Ensino Superior sentimos a necessidade de realizar algumas adequações nele para que fosse possível ensinar através da resolução de problemas e cumprir o plano de ensino da disciplina respeitando o calendário acadêmico. Este trabalho é um recorte de uma pesquisa de doutorado que visava desenvolver estratégias para inserir a metodologia de ensino-aprendizagem-avaliação de Matemática para ensinar conteúdos de Cálculo Diferencial e Integral nos horários regulares de aula. O objetivo deste texto é exemplificar como, na prática, a metodologia de Resolução de Problemas foi implementada a partir das orientações do roteiro do GTERP. Para tanto, apresentaremos e relataremos a tarefa proposta para abordar a definição formal de limite. Por fim, estabeleceremos um comparativo do roteiro do GTERP com o que de fato foi aplicado. As adequações nesse roteiro satisfizeram as nossas necessidades e cremos que preservaram a essência do que vem a ser uma aula cujo objetivo seja ensinar através da Resolução de Problemas. Sociedade Brasileira de Educação Matemática (SBEM)2020-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://www.revistasbemsp.com.br/index.php/REMat-SP/article/view/18710.37001/remat25269062v17id252Revista de Educação Matemática; Vol. 17 (2020): Publicação Contínua; e020012Revista de Educação Matemática; Vol. 17 (2020): Publicação Contínua; e020012Revista de Educação Matemática; v. 17 (2020): Publicação Contínua; e0200122526-9062reponame:Revista de Educação Matemática (Online)instname:Sociedade Brasileira de Educação Matemática, Brasília (SBEM-DF)instacron:SBEMporhttps://www.revistasbemsp.com.br/index.php/REMat-SP/article/view/187/200https://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessAzevedo, Eliane Bihuna dePalhares, Pedro Manuel BaptistaFigueiredo, Elisandra Bar de2023-07-08T19:09:21Zoai:ojs2.www.revistasbemsp.com.br:article/187Revistahttps://www.revistasbemsp.com.br/index.php/REMat-SPONGhttps://www.revistasbemsp.com.br/index.php/REMat-SP/oaidouglas.tinti@unicid.edu.br2526-90621676-8868opendoar:2023-07-08T19:09:21Revista de Educação Matemática (Online) - Sociedade Brasileira de Educação Matemática, Brasília (SBEM-DF)false |
dc.title.none.fl_str_mv |
Adaptation of the GTERP Mathematics Teaching-Learning-Assessment Methodology to teach Differential and Integral Calculus through Problem Solving Adaptación en el guión de la Metodología GTERP de Enseñanza-Aprendizaje-Evaluación para enseñar el Cálculo Diferencial e Integral a través de la Resolución de Problemas Adaptação no roteiro da Metodologia de Ensino-Aprendizagem-Avaliação de Matemática do GTERP para ensinar Cálculo Diferencial e Integral através da Resolução de Problemas |
title |
Adaptation of the GTERP Mathematics Teaching-Learning-Assessment Methodology to teach Differential and Integral Calculus through Problem Solving |
spellingShingle |
Adaptation of the GTERP Mathematics Teaching-Learning-Assessment Methodology to teach Differential and Integral Calculus through Problem Solving Azevedo, Eliane Bihuna de Metodologia de Resolução de Problemas Ensino de Cálculo Limite por definição Metodología de resolución de problemas Enseñanza de Cálculo Límite por definición Problem Solving Methodology Teaching Calculus Limit by definition |
title_short |
Adaptation of the GTERP Mathematics Teaching-Learning-Assessment Methodology to teach Differential and Integral Calculus through Problem Solving |
title_full |
Adaptation of the GTERP Mathematics Teaching-Learning-Assessment Methodology to teach Differential and Integral Calculus through Problem Solving |
title_fullStr |
Adaptation of the GTERP Mathematics Teaching-Learning-Assessment Methodology to teach Differential and Integral Calculus through Problem Solving |
title_full_unstemmed |
Adaptation of the GTERP Mathematics Teaching-Learning-Assessment Methodology to teach Differential and Integral Calculus through Problem Solving |
title_sort |
Adaptation of the GTERP Mathematics Teaching-Learning-Assessment Methodology to teach Differential and Integral Calculus through Problem Solving |
author |
Azevedo, Eliane Bihuna de |
author_facet |
Azevedo, Eliane Bihuna de Palhares, Pedro Manuel Baptista Figueiredo, Elisandra Bar de |
author_role |
author |
author2 |
Palhares, Pedro Manuel Baptista Figueiredo, Elisandra Bar de |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Azevedo, Eliane Bihuna de Palhares, Pedro Manuel Baptista Figueiredo, Elisandra Bar de |
dc.subject.por.fl_str_mv |
Metodologia de Resolução de Problemas Ensino de Cálculo Limite por definição Metodología de resolución de problemas Enseñanza de Cálculo Límite por definición Problem Solving Methodology Teaching Calculus Limit by definition |
topic |
Metodologia de Resolução de Problemas Ensino de Cálculo Limite por definição Metodología de resolución de problemas Enseñanza de Cálculo Límite por definición Problem Solving Methodology Teaching Calculus Limit by definition |
description |
The Methodology of Mathematics Teaching-Learning-Assessment through Problem Solving is a didactic strategy in which the student takes up an active role and is more committed to his / her learning, while the teacher is the mediator of the teaching and learning process. In Brazil, the Working and Study Group on Problem Solving (GTERP) is a research group developing school-environment related research and, for that, there is a script guiding teachers on how the above-mentioned methodology should be implemented. Such script’s third version consists of ten activities and can be employed at any level of education. However, when adopted to teach Differential and Integral Calculus contents in Higher Education, some adjustments had to be made to enable teaching through problem solving as well as fulfilling the course’s teaching plan while respecting the academic calendar. This work is a part of a doctoral research that aimed to develop strategies to insert the Problem-Solving Teaching-Learning-Assessment Methodology to teach contents of Differential and Integral Calculus in the regular class schedule. The objective of this text is to exemplify how, in practice, the Problem-Solving Methodology was implemented based on the GTERP’s script. To do so, we will present and report on an innovative proposal to address a formal limit definition. Finally, we will compare the GTERP’s script against what was actually applied. The adaptations on such script met our needs and we believe to have preserved the essence of what a class aiming to teach through Problem Solving should be. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.revistasbemsp.com.br/index.php/REMat-SP/article/view/187 10.37001/remat25269062v17id252 |
url |
https://www.revistasbemsp.com.br/index.php/REMat-SP/article/view/187 |
identifier_str_mv |
10.37001/remat25269062v17id252 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://www.revistasbemsp.com.br/index.php/REMat-SP/article/view/187/200 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Educação Matemática (SBEM) |
publisher.none.fl_str_mv |
Sociedade Brasileira de Educação Matemática (SBEM) |
dc.source.none.fl_str_mv |
Revista de Educação Matemática; Vol. 17 (2020): Publicação Contínua; e020012 Revista de Educação Matemática; Vol. 17 (2020): Publicação Contínua; e020012 Revista de Educação Matemática; v. 17 (2020): Publicação Contínua; e020012 2526-9062 reponame:Revista de Educação Matemática (Online) instname:Sociedade Brasileira de Educação Matemática, Brasília (SBEM-DF) instacron:SBEM |
instname_str |
Sociedade Brasileira de Educação Matemática, Brasília (SBEM-DF) |
instacron_str |
SBEM |
institution |
SBEM |
reponame_str |
Revista de Educação Matemática (Online) |
collection |
Revista de Educação Matemática (Online) |
repository.name.fl_str_mv |
Revista de Educação Matemática (Online) - Sociedade Brasileira de Educação Matemática, Brasília (SBEM-DF) |
repository.mail.fl_str_mv |
douglas.tinti@unicid.edu.br |
_version_ |
1798313494992388096 |