Boundary element method and simulated annealing algorithm applied to electrical impedance tomography image reconstruction
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Brasileira de Ensino de Física (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172013000200004 |
Resumo: | Physics has played a fundamental role in medicine sciences, specially in imaging diagnostic. Currently, image reconstruction techniques are already taught in Physics courses and there is a growing interest in new potential applications. The aim of this paper is to introduce to students the electrical impedance tomography, a promising technique in medical imaging. We consider a numerical example which consists in finding the position and size of a non-conductive region inside a conductive wire. We review the electrical impedance tomography inverse problem modeled by the minimization of an error functional. To solve the boundary value problem that arises in the direct problem, we use the boundary element method. The simulated annealing algorithm is chosen as the optimization method. Numerical tests show the technique is accurate to retrieve the non-conductive inclusion. |
id |
SBF-1_1bd52c9da81b9ab3a85d07039f671191 |
---|---|
oai_identifier_str |
oai:scielo:S1806-11172013000200004 |
network_acronym_str |
SBF-1 |
network_name_str |
Revista Brasileira de Ensino de Física (Online) |
repository_id_str |
|
spelling |
Boundary element method and simulated annealing algorithm applied to electrical impedance tomography image reconstructionelectrical impedance tomographyboundary element methodsimulated annealing algorithminverse problemoptimizationPhysics has played a fundamental role in medicine sciences, specially in imaging diagnostic. Currently, image reconstruction techniques are already taught in Physics courses and there is a growing interest in new potential applications. The aim of this paper is to introduce to students the electrical impedance tomography, a promising technique in medical imaging. We consider a numerical example which consists in finding the position and size of a non-conductive region inside a conductive wire. We review the electrical impedance tomography inverse problem modeled by the minimization of an error functional. To solve the boundary value problem that arises in the direct problem, we use the boundary element method. The simulated annealing algorithm is chosen as the optimization method. Numerical tests show the technique is accurate to retrieve the non-conductive inclusion.Sociedade Brasileira de Física2013-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172013000200004Revista Brasileira de Ensino de Física v.35 n.2 2013reponame:Revista Brasileira de Ensino de Física (Online)instname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/S1806-11172013000200004info:eu-repo/semantics/openAccessMenin,Olavo H.Rolnik,VanessaMartinez,Alexandre S.eng2013-07-05T00:00:00Zoai:scielo:S1806-11172013000200004Revistahttp://www.sbfisica.org.br/rbef/https://old.scielo.br/oai/scielo-oai.php||marcio@sbfisica.org.br1806-91261806-1117opendoar:2013-07-05T00:00Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF)false |
dc.title.none.fl_str_mv |
Boundary element method and simulated annealing algorithm applied to electrical impedance tomography image reconstruction |
title |
Boundary element method and simulated annealing algorithm applied to electrical impedance tomography image reconstruction |
spellingShingle |
Boundary element method and simulated annealing algorithm applied to electrical impedance tomography image reconstruction Menin,Olavo H. electrical impedance tomography boundary element method simulated annealing algorithm inverse problem optimization |
title_short |
Boundary element method and simulated annealing algorithm applied to electrical impedance tomography image reconstruction |
title_full |
Boundary element method and simulated annealing algorithm applied to electrical impedance tomography image reconstruction |
title_fullStr |
Boundary element method and simulated annealing algorithm applied to electrical impedance tomography image reconstruction |
title_full_unstemmed |
Boundary element method and simulated annealing algorithm applied to electrical impedance tomography image reconstruction |
title_sort |
Boundary element method and simulated annealing algorithm applied to electrical impedance tomography image reconstruction |
author |
Menin,Olavo H. |
author_facet |
Menin,Olavo H. Rolnik,Vanessa Martinez,Alexandre S. |
author_role |
author |
author2 |
Rolnik,Vanessa Martinez,Alexandre S. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Menin,Olavo H. Rolnik,Vanessa Martinez,Alexandre S. |
dc.subject.por.fl_str_mv |
electrical impedance tomography boundary element method simulated annealing algorithm inverse problem optimization |
topic |
electrical impedance tomography boundary element method simulated annealing algorithm inverse problem optimization |
description |
Physics has played a fundamental role in medicine sciences, specially in imaging diagnostic. Currently, image reconstruction techniques are already taught in Physics courses and there is a growing interest in new potential applications. The aim of this paper is to introduce to students the electrical impedance tomography, a promising technique in medical imaging. We consider a numerical example which consists in finding the position and size of a non-conductive region inside a conductive wire. We review the electrical impedance tomography inverse problem modeled by the minimization of an error functional. To solve the boundary value problem that arises in the direct problem, we use the boundary element method. The simulated annealing algorithm is chosen as the optimization method. Numerical tests show the technique is accurate to retrieve the non-conductive inclusion. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-06-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172013000200004 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172013000200004 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1806-11172013000200004 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
dc.source.none.fl_str_mv |
Revista Brasileira de Ensino de Física v.35 n.2 2013 reponame:Revista Brasileira de Ensino de Física (Online) instname:Sociedade Brasileira de Física (SBF) instacron:SBF |
instname_str |
Sociedade Brasileira de Física (SBF) |
instacron_str |
SBF |
institution |
SBF |
reponame_str |
Revista Brasileira de Ensino de Física (Online) |
collection |
Revista Brasileira de Ensino de Física (Online) |
repository.name.fl_str_mv |
Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF) |
repository.mail.fl_str_mv |
||marcio@sbfisica.org.br |
_version_ |
1752122421791424512 |