A simple derivation of the Lindblad equation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Brasileira de Ensino de Física (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172013000100003 |
Resumo: | We present a derivation of the Lindblad equation -an important tool for the treatment of nonunitary evolutions -that is accessible to undergraduate students in physics or mathematics with a basic background on quantum mechanics. We consider a specific case, corresponding to a very simple situation, where a primary system interacts with a bath of harmonic oscillators at zero temperature, with an interaction Hamiltonian that resembles the Jaynes-Cummings formato We start with the Born-Markov equation and, tracing out the bath degrees of freedom, we obtain an equation in the Lindblad formo The specific situation is very instructive, for it makes it easy to realize that the Lindblads represent the effect on the main system caused by the interaction with the bath, and that the Markov approximation is a fundamental condition for the emergence of the Lindbladian operator. The formal derivation of the Lindblad equation for a more general case requires the use of quantum dynamical semi-groups and broader considerations regarding the environment and temperature than we have considered in the particular case treated here. |
id |
SBF-1_4b77e38ce6df02a00f37db4f67599bb3 |
---|---|
oai_identifier_str |
oai:scielo:S1806-11172013000100003 |
network_acronym_str |
SBF-1 |
network_name_str |
Revista Brasileira de Ensino de Física (Online) |
repository_id_str |
|
spelling |
A simple derivation of the Lindblad equationLindblad equationopen quantum systemsWe present a derivation of the Lindblad equation -an important tool for the treatment of nonunitary evolutions -that is accessible to undergraduate students in physics or mathematics with a basic background on quantum mechanics. We consider a specific case, corresponding to a very simple situation, where a primary system interacts with a bath of harmonic oscillators at zero temperature, with an interaction Hamiltonian that resembles the Jaynes-Cummings formato We start with the Born-Markov equation and, tracing out the bath degrees of freedom, we obtain an equation in the Lindblad formo The specific situation is very instructive, for it makes it easy to realize that the Lindblads represent the effect on the main system caused by the interaction with the bath, and that the Markov approximation is a fundamental condition for the emergence of the Lindbladian operator. The formal derivation of the Lindblad equation for a more general case requires the use of quantum dynamical semi-groups and broader considerations regarding the environment and temperature than we have considered in the particular case treated here.Sociedade Brasileira de Física2013-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172013000100003Revista Brasileira de Ensino de Física v.35 n.1 2013reponame:Revista Brasileira de Ensino de Física (Online)instname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/S1806-11172013000100003info:eu-repo/semantics/openAccessBrasil,Carlos AlexandreFanchini,Felipe FernandesNapolitano,Reginaldo de Jesuseng2020-10-07T00:00:00Zoai:scielo:S1806-11172013000100003Revistahttp://www.sbfisica.org.br/rbef/https://old.scielo.br/oai/scielo-oai.php||marcio@sbfisica.org.br1806-91261806-1117opendoar:2020-10-07T00:00Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF)false |
dc.title.none.fl_str_mv |
A simple derivation of the Lindblad equation |
title |
A simple derivation of the Lindblad equation |
spellingShingle |
A simple derivation of the Lindblad equation Brasil,Carlos Alexandre Lindblad equation open quantum systems |
title_short |
A simple derivation of the Lindblad equation |
title_full |
A simple derivation of the Lindblad equation |
title_fullStr |
A simple derivation of the Lindblad equation |
title_full_unstemmed |
A simple derivation of the Lindblad equation |
title_sort |
A simple derivation of the Lindblad equation |
author |
Brasil,Carlos Alexandre |
author_facet |
Brasil,Carlos Alexandre Fanchini,Felipe Fernandes Napolitano,Reginaldo de Jesus |
author_role |
author |
author2 |
Fanchini,Felipe Fernandes Napolitano,Reginaldo de Jesus |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Brasil,Carlos Alexandre Fanchini,Felipe Fernandes Napolitano,Reginaldo de Jesus |
dc.subject.por.fl_str_mv |
Lindblad equation open quantum systems |
topic |
Lindblad equation open quantum systems |
description |
We present a derivation of the Lindblad equation -an important tool for the treatment of nonunitary evolutions -that is accessible to undergraduate students in physics or mathematics with a basic background on quantum mechanics. We consider a specific case, corresponding to a very simple situation, where a primary system interacts with a bath of harmonic oscillators at zero temperature, with an interaction Hamiltonian that resembles the Jaynes-Cummings formato We start with the Born-Markov equation and, tracing out the bath degrees of freedom, we obtain an equation in the Lindblad formo The specific situation is very instructive, for it makes it easy to realize that the Lindblads represent the effect on the main system caused by the interaction with the bath, and that the Markov approximation is a fundamental condition for the emergence of the Lindbladian operator. The formal derivation of the Lindblad equation for a more general case requires the use of quantum dynamical semi-groups and broader considerations regarding the environment and temperature than we have considered in the particular case treated here. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-03-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172013000100003 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172013000100003 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1806-11172013000100003 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
dc.source.none.fl_str_mv |
Revista Brasileira de Ensino de Física v.35 n.1 2013 reponame:Revista Brasileira de Ensino de Física (Online) instname:Sociedade Brasileira de Física (SBF) instacron:SBF |
instname_str |
Sociedade Brasileira de Física (SBF) |
instacron_str |
SBF |
institution |
SBF |
reponame_str |
Revista Brasileira de Ensino de Física (Online) |
collection |
Revista Brasileira de Ensino de Física (Online) |
repository.name.fl_str_mv |
Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF) |
repository.mail.fl_str_mv |
||marcio@sbfisica.org.br |
_version_ |
1752122421751578624 |