A simple derivation of the Lindblad equation

Detalhes bibliográficos
Autor(a) principal: Brasil, Carlos Alexandre
Data de Publicação: 2013
Outros Autores: Fanchini, Felipe Fernandes [UNESP], Napolitano, Reginaldo de Jesus
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1590/S1806-11172013000100003
http://hdl.handle.net/11449/74745
Resumo: We present a derivation of the Lindblad equation - an important tool for the treatment of nonunitary evo- lutions - that is accessible to undergraduate students in physics or mathematics with a basic background on quantum mechanics. We consider a specific case, corresponding to a very simple situation, where a primary system interacts with a bath of harmonic oscillators at zero temperature, with an interaction Hamiltonian that resembles the Jaynes-Cummings format. We start with the Born-Markov equation and, tracing out the bath degrees of freedom, we obtain an equation in the Lindblad form. The specific situation is very instructive, for it makes it easy to realize that the Lindblads represent the effect on the main system caused by the interaction with the bath, and that the Markov approximation is a fundamental condition for the emergence of the Lindbladian operator. The formal derivation of the Lindblad equation for a more general case requires the use of quantum dynamical semi-groups and broader considerations regarding the environment and temperature than we have considered in the particular case treated here. © The Sociedade Brasileira de Física.
id UNSP_23258faa6b2cc0bab6212ed62074f99c
oai_identifier_str oai:repositorio.unesp.br:11449/74745
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling A simple derivation of the Lindblad equationLindblad equationOpen quantum systemsWe present a derivation of the Lindblad equation - an important tool for the treatment of nonunitary evo- lutions - that is accessible to undergraduate students in physics or mathematics with a basic background on quantum mechanics. We consider a specific case, corresponding to a very simple situation, where a primary system interacts with a bath of harmonic oscillators at zero temperature, with an interaction Hamiltonian that resembles the Jaynes-Cummings format. We start with the Born-Markov equation and, tracing out the bath degrees of freedom, we obtain an equation in the Lindblad form. The specific situation is very instructive, for it makes it easy to realize that the Lindblads represent the effect on the main system caused by the interaction with the bath, and that the Markov approximation is a fundamental condition for the emergence of the Lindbladian operator. The formal derivation of the Lindblad equation for a more general case requires the use of quantum dynamical semi-groups and broader considerations regarding the environment and temperature than we have considered in the particular case treated here. © The Sociedade Brasileira de Física.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Instituto de Física Gleb Watahgin Universidade Estadual de Campinas, Campinas, SPFaculdade de Ciências de Bauru Universidade Estadual Paulista Julio de Mesquita Filho, Bauru, SPInstituto de Física de São Carlos Universidade de São Paulo, São Carlos, SPFaculdade de Ciências de Bauru Universidade Estadual Paulista Julio de Mesquita Filho, Bauru, SPFAPESP: 11/19848-4Universidade Estadual de Campinas (UNICAMP)Universidade Estadual Paulista (Unesp)Universidade de São Paulo (USP)Brasil, Carlos AlexandreFanchini, Felipe Fernandes [UNESP]Napolitano, Reginaldo de Jesus2014-05-27T11:28:36Z2014-05-27T11:28:36Z2013-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://dx.doi.org/10.1590/S1806-11172013000100003Revista Brasileira de Ensino de Fisica, v. 35, n. 1, 2013.0102-4744http://hdl.handle.net/11449/7474510.1590/S1806-11172013000100003S1806-11172013000100003WOS:0003200018000032-s2.0-848749858082-s2.0-84874985808.pdf88848904721934740000-0003-3297-905XScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengRevista Brasileira de Ensino de Físicainfo:eu-repo/semantics/openAccess2024-04-25T17:39:39Zoai:repositorio.unesp.br:11449/74745Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:29:42.224549Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv A simple derivation of the Lindblad equation
title A simple derivation of the Lindblad equation
spellingShingle A simple derivation of the Lindblad equation
Brasil, Carlos Alexandre
Lindblad equation
Open quantum systems
title_short A simple derivation of the Lindblad equation
title_full A simple derivation of the Lindblad equation
title_fullStr A simple derivation of the Lindblad equation
title_full_unstemmed A simple derivation of the Lindblad equation
title_sort A simple derivation of the Lindblad equation
author Brasil, Carlos Alexandre
author_facet Brasil, Carlos Alexandre
Fanchini, Felipe Fernandes [UNESP]
Napolitano, Reginaldo de Jesus
author_role author
author2 Fanchini, Felipe Fernandes [UNESP]
Napolitano, Reginaldo de Jesus
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual de Campinas (UNICAMP)
Universidade Estadual Paulista (Unesp)
Universidade de São Paulo (USP)
dc.contributor.author.fl_str_mv Brasil, Carlos Alexandre
Fanchini, Felipe Fernandes [UNESP]
Napolitano, Reginaldo de Jesus
dc.subject.por.fl_str_mv Lindblad equation
Open quantum systems
topic Lindblad equation
Open quantum systems
description We present a derivation of the Lindblad equation - an important tool for the treatment of nonunitary evo- lutions - that is accessible to undergraduate students in physics or mathematics with a basic background on quantum mechanics. We consider a specific case, corresponding to a very simple situation, where a primary system interacts with a bath of harmonic oscillators at zero temperature, with an interaction Hamiltonian that resembles the Jaynes-Cummings format. We start with the Born-Markov equation and, tracing out the bath degrees of freedom, we obtain an equation in the Lindblad form. The specific situation is very instructive, for it makes it easy to realize that the Lindblads represent the effect on the main system caused by the interaction with the bath, and that the Markov approximation is a fundamental condition for the emergence of the Lindbladian operator. The formal derivation of the Lindblad equation for a more general case requires the use of quantum dynamical semi-groups and broader considerations regarding the environment and temperature than we have considered in the particular case treated here. © The Sociedade Brasileira de Física.
publishDate 2013
dc.date.none.fl_str_mv 2013-03-01
2014-05-27T11:28:36Z
2014-05-27T11:28:36Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1590/S1806-11172013000100003
Revista Brasileira de Ensino de Fisica, v. 35, n. 1, 2013.
0102-4744
http://hdl.handle.net/11449/74745
10.1590/S1806-11172013000100003
S1806-11172013000100003
WOS:000320001800003
2-s2.0-84874985808
2-s2.0-84874985808.pdf
8884890472193474
0000-0003-3297-905X
url http://dx.doi.org/10.1590/S1806-11172013000100003
http://hdl.handle.net/11449/74745
identifier_str_mv Revista Brasileira de Ensino de Fisica, v. 35, n. 1, 2013.
0102-4744
10.1590/S1806-11172013000100003
S1806-11172013000100003
WOS:000320001800003
2-s2.0-84874985808
2-s2.0-84874985808.pdf
8884890472193474
0000-0003-3297-905X
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Revista Brasileira de Ensino de Física
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128520259371008