A simple derivation of the Lindblad equation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1590/S1806-11172013000100003 http://hdl.handle.net/11449/74745 |
Resumo: | We present a derivation of the Lindblad equation - an important tool for the treatment of nonunitary evo- lutions - that is accessible to undergraduate students in physics or mathematics with a basic background on quantum mechanics. We consider a specific case, corresponding to a very simple situation, where a primary system interacts with a bath of harmonic oscillators at zero temperature, with an interaction Hamiltonian that resembles the Jaynes-Cummings format. We start with the Born-Markov equation and, tracing out the bath degrees of freedom, we obtain an equation in the Lindblad form. The specific situation is very instructive, for it makes it easy to realize that the Lindblads represent the effect on the main system caused by the interaction with the bath, and that the Markov approximation is a fundamental condition for the emergence of the Lindbladian operator. The formal derivation of the Lindblad equation for a more general case requires the use of quantum dynamical semi-groups and broader considerations regarding the environment and temperature than we have considered in the particular case treated here. © The Sociedade Brasileira de Física. |
id |
UNSP_23258faa6b2cc0bab6212ed62074f99c |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/74745 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
A simple derivation of the Lindblad equationLindblad equationOpen quantum systemsWe present a derivation of the Lindblad equation - an important tool for the treatment of nonunitary evo- lutions - that is accessible to undergraduate students in physics or mathematics with a basic background on quantum mechanics. We consider a specific case, corresponding to a very simple situation, where a primary system interacts with a bath of harmonic oscillators at zero temperature, with an interaction Hamiltonian that resembles the Jaynes-Cummings format. We start with the Born-Markov equation and, tracing out the bath degrees of freedom, we obtain an equation in the Lindblad form. The specific situation is very instructive, for it makes it easy to realize that the Lindblads represent the effect on the main system caused by the interaction with the bath, and that the Markov approximation is a fundamental condition for the emergence of the Lindbladian operator. The formal derivation of the Lindblad equation for a more general case requires the use of quantum dynamical semi-groups and broader considerations regarding the environment and temperature than we have considered in the particular case treated here. © The Sociedade Brasileira de Física.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Instituto de Física Gleb Watahgin Universidade Estadual de Campinas, Campinas, SPFaculdade de Ciências de Bauru Universidade Estadual Paulista Julio de Mesquita Filho, Bauru, SPInstituto de Física de São Carlos Universidade de São Paulo, São Carlos, SPFaculdade de Ciências de Bauru Universidade Estadual Paulista Julio de Mesquita Filho, Bauru, SPFAPESP: 11/19848-4Universidade Estadual de Campinas (UNICAMP)Universidade Estadual Paulista (Unesp)Universidade de São Paulo (USP)Brasil, Carlos AlexandreFanchini, Felipe Fernandes [UNESP]Napolitano, Reginaldo de Jesus2014-05-27T11:28:36Z2014-05-27T11:28:36Z2013-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://dx.doi.org/10.1590/S1806-11172013000100003Revista Brasileira de Ensino de Fisica, v. 35, n. 1, 2013.0102-4744http://hdl.handle.net/11449/7474510.1590/S1806-11172013000100003S1806-11172013000100003WOS:0003200018000032-s2.0-848749858082-s2.0-84874985808.pdf88848904721934740000-0003-3297-905XScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengRevista Brasileira de Ensino de Físicainfo:eu-repo/semantics/openAccess2024-04-25T17:39:39Zoai:repositorio.unesp.br:11449/74745Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:29:42.224549Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
A simple derivation of the Lindblad equation |
title |
A simple derivation of the Lindblad equation |
spellingShingle |
A simple derivation of the Lindblad equation Brasil, Carlos Alexandre Lindblad equation Open quantum systems |
title_short |
A simple derivation of the Lindblad equation |
title_full |
A simple derivation of the Lindblad equation |
title_fullStr |
A simple derivation of the Lindblad equation |
title_full_unstemmed |
A simple derivation of the Lindblad equation |
title_sort |
A simple derivation of the Lindblad equation |
author |
Brasil, Carlos Alexandre |
author_facet |
Brasil, Carlos Alexandre Fanchini, Felipe Fernandes [UNESP] Napolitano, Reginaldo de Jesus |
author_role |
author |
author2 |
Fanchini, Felipe Fernandes [UNESP] Napolitano, Reginaldo de Jesus |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual de Campinas (UNICAMP) Universidade Estadual Paulista (Unesp) Universidade de São Paulo (USP) |
dc.contributor.author.fl_str_mv |
Brasil, Carlos Alexandre Fanchini, Felipe Fernandes [UNESP] Napolitano, Reginaldo de Jesus |
dc.subject.por.fl_str_mv |
Lindblad equation Open quantum systems |
topic |
Lindblad equation Open quantum systems |
description |
We present a derivation of the Lindblad equation - an important tool for the treatment of nonunitary evo- lutions - that is accessible to undergraduate students in physics or mathematics with a basic background on quantum mechanics. We consider a specific case, corresponding to a very simple situation, where a primary system interacts with a bath of harmonic oscillators at zero temperature, with an interaction Hamiltonian that resembles the Jaynes-Cummings format. We start with the Born-Markov equation and, tracing out the bath degrees of freedom, we obtain an equation in the Lindblad form. The specific situation is very instructive, for it makes it easy to realize that the Lindblads represent the effect on the main system caused by the interaction with the bath, and that the Markov approximation is a fundamental condition for the emergence of the Lindbladian operator. The formal derivation of the Lindblad equation for a more general case requires the use of quantum dynamical semi-groups and broader considerations regarding the environment and temperature than we have considered in the particular case treated here. © The Sociedade Brasileira de Física. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-03-01 2014-05-27T11:28:36Z 2014-05-27T11:28:36Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1590/S1806-11172013000100003 Revista Brasileira de Ensino de Fisica, v. 35, n. 1, 2013. 0102-4744 http://hdl.handle.net/11449/74745 10.1590/S1806-11172013000100003 S1806-11172013000100003 WOS:000320001800003 2-s2.0-84874985808 2-s2.0-84874985808.pdf 8884890472193474 0000-0003-3297-905X |
url |
http://dx.doi.org/10.1590/S1806-11172013000100003 http://hdl.handle.net/11449/74745 |
identifier_str_mv |
Revista Brasileira de Ensino de Fisica, v. 35, n. 1, 2013. 0102-4744 10.1590/S1806-11172013000100003 S1806-11172013000100003 WOS:000320001800003 2-s2.0-84874985808 2-s2.0-84874985808.pdf 8884890472193474 0000-0003-3297-905X |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Revista Brasileira de Ensino de Física |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128520259371008 |