Exploring the magnetic field of Helmholtz and Maxwell coils: a computer-based approach exploiting the superposition principle
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Brasileira de Ensino de Física (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172020000100486 |
Resumo: | Abstract Teaching magnetism is one of the most challenging topics at undergraduate level in programmes with scientific background. A basic course includes the description of the magnetic interaction along with empirical results such as the Biot-Savart law's. However, evaluating the magnetic field due to certain current carrying system at any point in space is not an easy task, especially for points in space where symmetry arguments cannot be applied. In this paper we study the magnetic field produced by both Helmholtz and Maxwell coils at all points in space by using a hybrid methodology that combines the superposition principle and an analytical result. We implement a computational approach, that is based on iterating n times the magnetic field produced by a finite current-carrying wire, to evaluate the magnetic field at any point in space for coils arrangements without using advanced calculus. This methodology helps teachers and students to explore the field due to systems with different levels of complexity, combining analytical and computational skills to visualize and analyse the magnetic field. After our analysis, we show that this is an useful approach to emphasize fundamental concepts and mitigate some of the issues that arise when evaluating the magnetic field for systems proposed in introductory physics textbooks. |
id |
SBF-1_4e4d6c108a45832d18b023582a4ecceb |
---|---|
oai_identifier_str |
oai:scielo:S1806-11172020000100486 |
network_acronym_str |
SBF-1 |
network_name_str |
Revista Brasileira de Ensino de Física (Online) |
repository_id_str |
|
spelling |
Exploring the magnetic field of Helmholtz and Maxwell coils: a computer-based approach exploiting the superposition principleteaching magnetic fieldsuperposition principlecomputational approachAbstract Teaching magnetism is one of the most challenging topics at undergraduate level in programmes with scientific background. A basic course includes the description of the magnetic interaction along with empirical results such as the Biot-Savart law's. However, evaluating the magnetic field due to certain current carrying system at any point in space is not an easy task, especially for points in space where symmetry arguments cannot be applied. In this paper we study the magnetic field produced by both Helmholtz and Maxwell coils at all points in space by using a hybrid methodology that combines the superposition principle and an analytical result. We implement a computational approach, that is based on iterating n times the magnetic field produced by a finite current-carrying wire, to evaluate the magnetic field at any point in space for coils arrangements without using advanced calculus. This methodology helps teachers and students to explore the field due to systems with different levels of complexity, combining analytical and computational skills to visualize and analyse the magnetic field. After our analysis, we show that this is an useful approach to emphasize fundamental concepts and mitigate some of the issues that arise when evaluating the magnetic field for systems proposed in introductory physics textbooks.Sociedade Brasileira de Física2020-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172020000100486Revista Brasileira de Ensino de Física v.42 2020reponame:Revista Brasileira de Ensino de Física (Online)instname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/1806-9126-rbef-2020-0282info:eu-repo/semantics/openAccessGarcía-Farieta,Jorge EnriqueMárquez,Alejandro Hurtadoeng2020-09-30T00:00:00Zoai:scielo:S1806-11172020000100486Revistahttp://www.sbfisica.org.br/rbef/https://old.scielo.br/oai/scielo-oai.php||marcio@sbfisica.org.br1806-91261806-1117opendoar:2020-09-30T00:00Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF)false |
dc.title.none.fl_str_mv |
Exploring the magnetic field of Helmholtz and Maxwell coils: a computer-based approach exploiting the superposition principle |
title |
Exploring the magnetic field of Helmholtz and Maxwell coils: a computer-based approach exploiting the superposition principle |
spellingShingle |
Exploring the magnetic field of Helmholtz and Maxwell coils: a computer-based approach exploiting the superposition principle García-Farieta,Jorge Enrique teaching magnetic field superposition principle computational approach |
title_short |
Exploring the magnetic field of Helmholtz and Maxwell coils: a computer-based approach exploiting the superposition principle |
title_full |
Exploring the magnetic field of Helmholtz and Maxwell coils: a computer-based approach exploiting the superposition principle |
title_fullStr |
Exploring the magnetic field of Helmholtz and Maxwell coils: a computer-based approach exploiting the superposition principle |
title_full_unstemmed |
Exploring the magnetic field of Helmholtz and Maxwell coils: a computer-based approach exploiting the superposition principle |
title_sort |
Exploring the magnetic field of Helmholtz and Maxwell coils: a computer-based approach exploiting the superposition principle |
author |
García-Farieta,Jorge Enrique |
author_facet |
García-Farieta,Jorge Enrique Márquez,Alejandro Hurtado |
author_role |
author |
author2 |
Márquez,Alejandro Hurtado |
author2_role |
author |
dc.contributor.author.fl_str_mv |
García-Farieta,Jorge Enrique Márquez,Alejandro Hurtado |
dc.subject.por.fl_str_mv |
teaching magnetic field superposition principle computational approach |
topic |
teaching magnetic field superposition principle computational approach |
description |
Abstract Teaching magnetism is one of the most challenging topics at undergraduate level in programmes with scientific background. A basic course includes the description of the magnetic interaction along with empirical results such as the Biot-Savart law's. However, evaluating the magnetic field due to certain current carrying system at any point in space is not an easy task, especially for points in space where symmetry arguments cannot be applied. In this paper we study the magnetic field produced by both Helmholtz and Maxwell coils at all points in space by using a hybrid methodology that combines the superposition principle and an analytical result. We implement a computational approach, that is based on iterating n times the magnetic field produced by a finite current-carrying wire, to evaluate the magnetic field at any point in space for coils arrangements without using advanced calculus. This methodology helps teachers and students to explore the field due to systems with different levels of complexity, combining analytical and computational skills to visualize and analyse the magnetic field. After our analysis, we show that this is an useful approach to emphasize fundamental concepts and mitigate some of the issues that arise when evaluating the magnetic field for systems proposed in introductory physics textbooks. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172020000100486 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172020000100486 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1806-9126-rbef-2020-0282 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
dc.source.none.fl_str_mv |
Revista Brasileira de Ensino de Física v.42 2020 reponame:Revista Brasileira de Ensino de Física (Online) instname:Sociedade Brasileira de Física (SBF) instacron:SBF |
instname_str |
Sociedade Brasileira de Física (SBF) |
instacron_str |
SBF |
institution |
SBF |
reponame_str |
Revista Brasileira de Ensino de Física (Online) |
collection |
Revista Brasileira de Ensino de Física (Online) |
repository.name.fl_str_mv |
Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF) |
repository.mail.fl_str_mv |
||marcio@sbfisica.org.br |
_version_ |
1752122424790351872 |